Solid-state energy conversion technologies such as thermoelectric and thermionic refrigeration and power generation require materials with low thermal conductivity but good electrical conductivity and Seebeck coefficient, which are difficult to realize in bulk semiconductors. Nanostructures such as superlattices, quantum wires, and quantum dots provide alternative approaches to improve the solid-state energy conversion efficiency through size and interface effects on the electron and phonon transport. In this review, we discuss recent research and progress using nanostructures for solid-state energy conversion. The emphasis is placed on fundamental issues that distinguish energy transport and conversion between nanoscale and macroscale, as well as heat transfer issues related to device development and property characterization.

1.
Goldsmid, H. J., 1964, Thermoelectric Refrigeration, Plenum Press, New York.
2.
Rowe, D. M., ed., 1995, Handbook of Thermoelectrics, CRC Press, Boca Raton.
3.
Ioffe, A. F., 1957, Semiconductor Thermoelements and Thermoelectric Cooling, Infosearch Limited, London.
4.
Tritt, T. M., ed., 2001, “Recent Trend in Thermoelectric Materials Research,” in Semiconductors and Semimetals, Vol. 69-Vol. 71, Academic Press, San Diego.
5.
Hicks
,
L. D.
, and
Dresselhaus
,
M. S.
,
1993
, “
Effect of Quantum-Well Structures on the Thermoelectric Figure of Merit
,”
Phys. Rev. B
,
47
, pp.
12727
12731
.
6.
Dresselhaus
,
M. S.
,
Lin
,
Y. M.
,
Cronin
,
S. B.
,
Rabin
,
O.
,
Black
,
M. R.
,
Dresselhaus
,
G.
, and
Koga
,
T.
,
2001
, “
Quantum Wells and Quantum Wires for Potential Thermoelectric Applications,” in
Semicond. Semimetals
,
71
, pp.
1
121
.
7.
Shakouri
,
A.
, and
Bowers
,
J. E.
,
1997
, “
Heterostructure Integrated Thermionic Coolers
,”
Appl. Phys. Lett.
,
71
, pp.
1234
1236
.
8.
Mahan
,
G. D.
,
2001
, “
Thermionic Refrigeration
,”
Semicond. Semimetals
,
71
, pp.
157
174
.
9.
Venkatasubramanian
,
R.
,
2001
, “
Phonon Blocking Electron Transmitting Superlattice Structures as Advanced Thin Film Thermoelectric Materials
,”
Semicond. Semimetals
,
71
, pp.
175
201
.
10.
Chen
,
G.
,
2001
, “
Phonon Transport in Low-Dimensional Structures
,”
Semicond. Semimetals
,
71
, pp.
203
259
.
11.
Harman
,
T. C.
,
Taylor
,
P. J.
,
Spears
,
D. L.
, and
Walsh
,
M. P.
,
2000
, “
Thermoelectric Quantum-Dot Superlattices with High ZT
,”
J. Electron. Mater.
,
29
, pp.
L1–L4
L1–L4
.
12.
Dubios, L., 1999, “An Introduction to the DARPA Program in Advanced Thermoelectric Materials and Devices,” Proc. Int. Conf. Thermoelectrics, ICT’99, pp. 1–4.
13.
Aschroft, N. W., and Mermin, N. D., 1976, Solid State Physics, Saunders College Publishing, Fort Worth.
14.
Mahan
,
G. D.
, and
Sofo
,
J. O.
,
1996
, “
The Best Thermoelectric
,”
Proc. Natl. Acad. Sci. U.S.A.
,
93
, pp.
7436
7439
.
15.
Sun, X., Cronin, S. B., Liu, J. L., Wang, K. L., Koga, T., Dresselhaus, M. S., and Chen, G., 1999, “Experimental Study of the Effect of the Quantum Well Structures on the Thermoelectric Figure of Merit in Si/SixGel-x System,” Proceedings of Int. Conf. Thermoelectrics, ICT’99, pp. 652–655.
16.
Broido
,
D. A.
, and
Reinecke
,
T. L.
,
1995
, “
Effect of Superlattice Structure on the Thermoelectric Figure of Merit
,”
Phys. Rev. B
,
51
, pp.
13797
13800
.
17.
Sofo
,
J. O.
, and
Mahan
,
G. D.
,
1994
, “
Thermoelectric Figure of Merit of Superlattices
,”
Appl. Phys. Lett.
,
65
, pp.
2690
2692
.
18.
Koga
,
T.
,
Sun
,
X.
,
Cronin
,
S. B.
, and
Dresselhaus
,
M. S.
,
1998
, “
Carrier Pocket Engineering to Design Superior Thermoelectric Materials Using GaAs/AlAs Superlattices
,”
Appl. Phys. Lett.
,
73
, pp.
2950
2952
.
19.
Koga
,
T.
,
Cronin
,
S. B.
,
Dresselhaus
,
M. S.
,
Liu
,
J. L.
, and
Wang
,
K. L.
,
2000
, “
Experimental Proof-of-Principle Investigation of Enhanced Z3DT in (001) Oriented Si/Ge Superlattices
,”
Appl. Phys. Lett.
,
77
, pp.
1490
1492
.
20.
Chen
,
G.
,
1997
, “
Size and Interface Effects on Thermal Conductivity of Superlattices and Periodic Thin-Film Structures
,”
ASME J. Heat Transfer
,
119
, pp.
220
229
(see also Proc. 1996 Nat. Heat Transf. Conf., ASME HTD-Vol. 323, 121, 1996).
21.
Hicks
,
L. D.
,
Harman
,
T. C.
, and
Dresselhaus
,
M. S.
,
1996
, “
Experimental Study of the Effect of Quantum-Well Structures on the Thermoelectric Figure of Merit
,”
Phys. Rev. B
,
53
, pp.
10493
10496
.
22.
Harman
,
T. C.
,
Taylor
,
P. J.
,
Spears
,
D. L.
, and
Walsh
,
M. P.
,
2000
, “
Thermoelectric Quantum-Dot Superlattices With High ZT
,”
J. Electron. Mater.
,
29
, pp.
L1–L4
L1–L4
.
23.
Whitlow
,
L. W.
, and
Hirano
,
T.
,
1995
, “
Superlattice Application to Thermoelectricity
,”
J. Appl. Phys.
,
78
, pp.
5460
5466
.
24.
Radtke
,
R. J.
,
Ehrenreich
,
H.
, and
Grein
,
C. H.
,
1999
, “
Multilayer Thermoelectric Refrigeration in Hg1−xCdxTe Superlattices
,”
J. Appl. Phys.
,
86
, pp.
3195
3198
.
25.
Kumar, R., Borca-Tasciuc, D., Zeng, T., and Chen, G., 2000, “Thermal Conductivity of Nanochanneled Alumina,” Proc. Int. Mech. Eng. Congress and Exhibition (IMECE2000), ASME HTD-Vol. 366-2, pp. 393–398.
26.
Zhang
,
Z. B.
,
Gekhtman
,
D.
,
Dresselhaus
,
M. S.
, and
Ying
,
J. Y.
,
1999
, “
Processing and Characterization of Single-Crystalline Ultrafine Bismuth Nanowires
,”
Chem. Mater.
,
11
, pp.
1659
1665
.
27.
Heremans
,
J.
,
Thrush
,
C. M.
,
Lin
,
Y. M.
,
Cronin
,
S.
, and
Dresselhaus
,
M. S.
,
2000
, “
Bismuth Nanowire Arrays: Synthesis and Galvanomagnetic Properties
,”
Phys. Rev. B
,
61
, pp.
2921
2930
.
28.
Behnke, J. F., Prieto, A. L., Stacy, A. M., and Sands, T., 1999, “Electrodeposition of CoSb3 Nanowires,” ICT’99 pp. 451–453.
29.
Hatsopoulos
,
G. N.
, and
Kaye
,
J.
,
1958
, “
Measured Thermal Efficiencies of a Diode Configuration of a Thermo Electron Engine
,”
J. Appl. Phys.
,
29
, pp.
1124
1125
.
30.
Mahan
,
G. D.
,
1994
, “
Thermionic Refrigeration
,”
J. Appl. Phys.
,
76
, pp.
4362
4366
.
31.
Mahan
,
G. D.
, and
Woods
,
L. M.
,
1998
, “
Multilayer Thermionic Refrigeration
,”
Phys. Rev. Lett.
,
80
, pp.
4016
4019
.
32.
Shakouri
,
A.
,
Lee
,
E. Y.
,
Smith
,
D. L.
,
Narayanamurti
,
V.
, and
Bowers
,
J. E.
,
1998
, “
Thermoelectric Effects in Submicron Heterostructure Barriers
,”
Microscale Thermophys. Eng.
,
2
, pp.
37
42
.
33.
Moyzhes
,
B.
, and
Nemchinsky
,
V.
,
1998
, “
Thermoelectric Figure of Merit of Metal-Semiconductor Barrier Structure based on Energy Relaxation Length
,”
Appl. Phys. Lett.
,
73
, pp.
1895
1897
.
34.
Miskovsky
,
N. M.
, and
Cutler
,
P. H.
,
1999
, “
Microelectronic Cooling Using the Nottingham Effect and Internal Field Emission in a Diamond (Wide-Band Gap Material) Thin-Film Device
,”
Appl. Phys. Lett.
,
75
, pp.
2147
2149
.
35.
Korotkov
,
A. N.
, and
Likharev
,
K. K.
,
1999
, “
Possible Cooling by Resonant Fowler-Nordheim Emission
,”
Appl. Phys. Lett.
,
75
, pp.
2491
2493
.
36.
Shakouri
,
A.
,
Labounty
,
C.
,
Abraham
,
P.
,
Piprek
,
J.
, and
Bowers
,
J. E.
,
1998
, “
Enhanced Thermionic Emission Cooling in High Barrier Superlattice Heterostructures
,”
Mater. Res. Soc. Symp. Proc.
,
545
, pp.
449
458
.
37.
Shakouri
,
A.
,
LaBounty
,
C.
,
Piprek
,
J.
,
Abraham
,
P.
, and
Bowers
,
J. E.
,
1999
, “
Thermionic Emission Cooling in Single Barrier Heterostructures
,”
Appl. Phys. Lett.
,
74
, pp.
88
89
.
38.
Zeng
,
G. H.
,
Shakouri
,
A.
,
La Bounty
,
C.
,
Robinson
,
G.
,
Croke
,
E.
,
Abraham
,
P.
,
Fan
,
X. F.
,
Reese
,
H.
, and
Bowers
,
J. E.
,
1999
, “
SiGe Micro-Cooler
,”
Electron. Lett.
,
35
, pp.
2146
2147
.
39.
Fan
,
X. F.
,
Zeng
,
G. H.
,
LaBounty
,
C.
,
Bowers
,
J. E.
,
Croke
,
E.
,
Ahn
,
C. C.
,
Huxtable
,
S.
,
Majumdar
,
A.
, and
Shakouri
,
A.
,
2001
, “
SiGeC/Si Superlattice Microcoolers
,”
Appl. Phys. Lett.
,
78
, pp.
1580
1582
.
40.
Fan
,
X. F.
,
Zeng
,
G.
,
Croke
,
E.
,
LaBounty
,
C.
,
Ahn
,
C. C.
,
Vashaee
,
D.
,
Shakouri
,
A.
, and
Bowers
,
J. E.
,
2001
, “
High Cooling Power Density SiGe/Si Micro-Coolers
,”
Electron. Lett.
,
37
, pp.
126
127
.
41.
LaBounty
,
C.
,
Shakouri
,
A.
,
Abraham
,
P.
, and
Bowers
,
J. E.
,
2000
, “
Monolithic Integration of Thin-Film Coolers with Optoelectronic Devices
,”
Opt. Eng.
,
39
, pp.
2847
2852
.
42.
LaBounty
,
C.
,
Shakouri
,
A.
, and
Bowers
,
J. E.
,
2001
, “
Design and Characterization of Thin Film Microcoolers
,”
J. Appl. Phys.
,
89
, pp.
4059
4064
.
43.
Zeng, G., Fan, X., LaBounty, C., Bowers, J. E., Croke, E., and Shakouri, A., “Direct Measurements of Cooling Power Density for SiGe/Si Superlattice Microcoolers,” submitted for publication.
44.
Zeng
,
T. F.
, and
Chen
,
G.
,
2000
, “
Energy Conversion in Heterostructures for Thermionic Cooling
,”
Microscale Thermophys. Eng.
,
4
, pp.
39
50
.
45.
Reggiani, L., ed., 1985, Hot-Electron Transport in Semiconductors, Springer-Verlag.
46.
Qiu
,
T. Q.
, and
Tien
,
C. L.
,
1993
, “
Heat Transfer Mechanisms During Short-Pulse Laser Heating of Metals
,”
ASME J. Heat Transfer
,
115
, pp.
835
841
.
47.
Zeng, T. F., and Chen, G., 2000, “Nonequilibrium Nonequilibrium Electron and Phonon Transport in Heterostructures for Energy Conversion,” Proceedings of Int. Mech. Eng. Congress and Exhibition (IMECE2000), ASME HTD-Vol. 366-2, pp. 361–372.
48.
Vashaee, D., and Shakouri, A., 2002, unpublished.
49.
Nolas
,
G. S.
,
Slack
,
G. A.
,
Morelli
,
D. T.
,
Tritt
,
T. M.
, and
Ehrlich
,
A. C.
,
1996
, “
The Effect of Rare-Earth Filling on the Lattice Thermal Conductivity of Skutterudites
,”
J. Appl. Phys.
,
79
, pp.
4002
4008
.
50.
Casimir
,
H. B. G.
,
1938
, “
Note on the Conduction of Heat in Crystals
,”
Physica
,
5
, pp.
495
500
.
51.
Venkatasubramanian
,
R.
,
1996
, “
Thin-Film Superlattice and Quantum-Well Structures—A New Approach to High-Performance Thermoelectric Materials
,”
Nav. Res. Rev.
,
58
, pp.
44
54
.
52.
Yao
,
T.
,
1987
, “
Thermal Properties of AlAs/GaAs Superlattices
,”
Appl. Phys. Lett.
,
51
, pp.
1798
1800
.
53.
Chen
,
G.
,
Tien
,
C. L.
,
Wu
,
X.
, and
Smith
,
J. S.
,
1994
, “
Measurement of Thermal Diffusivity of GaAs/AlGaAs Thin-Film Structures
,”
ASME J. Heat Transfer
,
116
, pp.
325
331
.
54.
Tien
,
C. L.
, and
Chen
,
G.
,
1994
, “
Challenges in Microscale Conductive and Radiative Heat Transfer
,”
ASME J. Heat Transfer
,
116
, pp.
799
807
.
55.
Yu
,
X. Y.
,
Chen
,
G.
,
Verma
,
A.
, and
Smith
,
J. S.
,
1995
, “
Temperature Dependence of Thermophysical Properties of GaAs/AlAs Periodic Structure
,”
Appl. Phys. Lett.
67
, pp.
3554
3556
, p. 1303.
56.
Capsinski
,
W. S.
, and
Maris
,
H. J.
,
1996
, “
Thermal Conductivity of GaAs/AlAs Superlattices
,”
Physica B
,
220
, pp.
699
701
.
57.
Lee
,
S. M.
,
Cahill
,
D. G.
, and
Venkatasubramanian
,
R.
,
1997
, “
Thermal Conductivity of Si-Ge Superlattices
,”
Appl. Phys. Lett.
,
70
, pp.
2957
2959
.
58.
Yamasaki, I., Yamanaka, R., Mikami, M., Sonobe, H., Mori, Y., and Sasaki, T., 1998, “Thermoelectric Properties of Bi2Te3/Sb2Te3 Superlattice Structures,” Proc. Int. Conf. Thermoelectrics, ICT’98, pp. 210–213.
59.
Capinski
,
W. S.
,
Maris
,
H. J.
,
Ruf
,
T.
,
Cardona
,
M.
,
Ploog
,
K.
, and
Katzer
,
D. S.
,
1999
, “
Thermal-Conductivity Measurements of GaAs/AlAs Superlattices Using a Picosecond Optical Pump-and-Probe Technique
,”
Phys. Rev. B
,
59
, pp.
8105
8113
.
60.
Borca-Tasciuc
,
T.
,
Liu
,
W. L.
,
Zeng
,
T.
,
Song
,
D. W.
,
Moore
,
C. D.
,
Chen
,
G.
,
Wang
,
K. L.
,
Goorsky
,
M. S.
,
Radetic
,
T.
,
Gronsky
,
R.
,
Koga
,
T.
, and
Dresselhaus
,
M. S.
,
2000
, “
Thermal Conductivity of Symmetrically Strained Si/Ge Superlattices
,”
Superlattices Microstruct.
,
28
, pp.
119
206
.
61.
Song
,
D. W.
,
Liu
,
W. L.
,
Zeng
,
T.
,
Borca-Tasciuc
,
T.
,
Chen
,
G.
,
Caylor
,
C.
, and
Sands
,
T. D.
,
2000
, “
Thermal Conductivity of Skutterudite Thin Films and Superlattices
,”
Appl. Phys. Lett.
,
77
, pp.
3854
3856
.
62.
Venkatasubramanian
,
R.
,
2000
, “
Lattice Thermal Conductivity Reduction and Phonon Localizationlike Behavior in Superlattice Structures
,”
Phys. Rev. B
,
61
, pp.
3091
3097
.
63.
Huxtable
,
S. T.
,
Shakouri
,
A.
,
LaBounty
,
C.
,
Fan
,
X.
,
Abraham
,
P.
,
Chiu
,
Y. J.
,
Chiu
,
Y. J.
, and
Majumdar
,
A.
,
2000
, “
Thermal Conductivity of Indium Phosphide-Based Superlattices
,”
Microscale Thermophys. Eng.
,
4
, pp.
197
203
.
64.
Borca-Tasciuc
,
T.
,
Achimov
,
D.
,
Liu
,
W. L.
,
Chen
,
G.
,
Ren
,
H.-W.
,
Lin
,
C.-H.
, and
Pei
,
S. S.
,
2001
, “
Thermal Conductivity of InAs/AlSb Superlattices
,”
Microscale Thermophys. Eng.
,
5
, pp.
225
231
.
65.
Liu
,
W. L.
,
Borca-Tasciuc
,
T.
,
Chen
,
G.
,
Liu
,
J. L.
, and
Wang
,
K. L.
,
2001
, “
Anisotropy Thermal Conductivity of Ge-Quantum Dot and Symmetrically Strained Si/Ge Superlattice
,”
J. Nanosci. Nanotech.
,
1
, pp.
39
42
.
66.
Narayanamurti
,
V.
,
Stormer
,
J. L.
,
Chin
,
M. A.
,
Gossard
,
A. C.
, and
Wiegmann
,
W.
,
1979
, “
Selective Transmission of High-Frequency Phonons by a Superlattice: the Dielectric Phonon Filter
,”
Phys. Rev. Lett.
,
43
, pp.
2012
2015
.
67.
Ren
,
S. Y.
, and
Dow
,
J.
,
1982
, “
Thermal Conductivity of Superlattices
,”
Phys. Rev. B
,
25
, pp.
3750
3755
.
68.
Chen
,
G.
,
1997
, “
Size and Interface Effects on Thermal Conductivity of Superlattices and Periodic Thin-Film Structures
,”
ASME J. Heat Transfer
,
119
, pp.
220
229
.
69.
Hyldgaard
,
P.
, and
Mahan
,
G. D.
,
1996
, “
Phonon Knudson Flow in Superlattices
,”
Therm. Conduct.
,
23
, p.
172
181
.
70.
Chen
,
G.
, and
Neagu
,
M.
,
1997
, “
Thermal Conductivity and Heat Transfer in Superlattices
,”
Appl. Phys. Lett.
,
71
, pp.
2761
2763
.
71.
Chen
,
G.
,
1998
, “
Thermal Conductivity and Ballistic Phonon Transport in Cross-Plane Direction of Superlattices
,”
Phys. Rev. B
,
57
, pp.
14958
14973
.
72.
Hyldgaard
,
P.
, and
Mahan
,
G. D.
,
1997
, “
Phonon Superlattice Transport
,”
Phys. Rev. B
,
56
, pp.
10754
10757
.
73.
Tamura
,
S.
,
Tanaka
,
Y.
, and
Maris
,
H. J.
,
1999
, “
Phonon Group Velocity and Thermal Conduction in Superlattices
,”
Phys. Rev. B
,
60
, pp.
2627
2630
.
74.
Bies
,
W. E.
,
Radtke
,
R. J.
, and
Ehrenreich
,
H.
,
2000
, “
Phonon Dispersion Effects and the Thermal Conductivity Reduction in GaAs/AlAs Superlattices
,”
J. Appl. Phys.
,
88
, pp.
1498
1503
.
75.
Kiselev
,
A. A.
,
Kim
,
K. W.
, and
Stroscio
,
M. A.
,
2000
, “
Thermal Conductivity of Si/Ge Superlattices: A Realistic Model with a Diatomic Unit Cell
,”
Phys. Rev. B
,
62
, pp.
6896
6899
.
76.
Yang
,
B.
, and
Chen
,
G.
,
2001
, “
Anisotropy of Heat Conduction in Superlattices
,”
Microscale Thermophys. Eng.
,
5
, pp.
107
116
.
77.
Volz
,
S. G.
,
Saulnier
,
J. B.
,
Chen
,
G.
, and
Beauchamp
,
P.
,
2000
, “
Computation of Thermal Conductivity of Si/Ge Superlattices by Molecular Dynamics Techniques
,”
Microelectronics J.
,
31
, pp.
815
819
.
78.
Liang
,
X. G.
, and
Shi
,
B.
,
2000
, “
Two-Dimensional Molecular Dynamics Simulation of the Thermal Conductance of Superlattices with Lennard-Jones Potential
,”
Mater. Sci. Eng.
,
292
, pp.
198
202
.
79.
Chen
,
G.
,
1999
, “
Phonon Wave Heat Conduction in Thin Films and Superlattices
,”
ASME J. Heat Transfer
,
121
, pp.
945
953
.
80.
Balandin
,
A.
, and
Wang
,
K. L.
,
1998
, “
Effect of Phonon Confinement on the Thermoelectric Figure of Merit of Quantum Wells
,”
J. Appl. Phys.
,
84
, pp.
6149
6153
.
81.
Ju
,
Y. S.
, and
Goodson
,
K. E.
,
1999
, “
Phonon Scattering in Silicon Films with Thickness of Order 100 nm
,”
Appl. Phys. Lett.
,
74
, pp.
3005
3007
.
82.
Ziman, J. M., 1960, Electrons and Phonons, Clarendon Press, Oxford.
83.
Venkatasubramian, R., Siivola, E., and Colpitts, T. S., 1998, “In-Plane Thermoelectric Properties of Freestanding Si/Ge Superlattice Structures,” Proc. Int. Conf. Thermoelectrics, ICT’98, pp. 191–197.
84.
Simkin
,
M. V.
, and
Mahan
,
G. D.
,
2000
, “
Minimum Thermal Conductivity of Superlattices
,”
Phys. Rev. Lett.
,
84
, pp.
927
930
.
85.
Arutyunyan
,
L. I.
,
Bogomolov
,
V. N.
,
Kartenko
,
N. F.
,
Kurdyukov
,
D. A.
,
Popov
,
V. V.
,
Prokof’ev
,
A. V.
,
Smirnov
,
I. A.
, and
Sharenkova
,
N. V.
,
1997
, “
Thermal Conductivity of a New Type of Regular-Structure Nanocomposites: PbSe in Opal Pores
,”
Phys. Solid State
,
39
, pp.
510
514
.
86.
Song, D. W., Shen, W.-N., Zeng, T., Liu, W. L., Chen, G., Dunn, B., Moore, C. D., Goorsky, M. S., Radetic, R., and Gronsky, R., 1999, “Thermal Conductivity of Nano-Porous Bismuth Thin Films for Thermoelectric Applications,” ASME HTD-Vol. 364-1, pp. 339–344.
87.
Volz
,
S. G.
, and
Chen
,
G.
,
1999
, “
Molecular Dynamics Simulation of Thermal Conductivity of Si Nanowires
,”
Appl. Phys. Lett.
,
75
, pp.
2056
2058
.
88.
Walkauskas
,
S. G.
,
Broido
,
D. A.
,
Kempa
,
K.
, and
Reinecke
,
T. L.
,
1999
, “
Lattice Thermal Conductivity of Wires
,”
J. Appl. Phys.
,
85
, pp.
2579
2582
.
89.
Kim
,
P.
,
Shi
,
L.
,
Majumadar
,
A.
, and
McEuen
,
P. L.
,
2001
, “
Thermal Transport Measurements on Individual Multi-walled Nanotubes
,”
Phys. Rev. Lett.
,
87
, p.
215502
215502
.
90.
Cahill
,
D. G.
,
1990
, “
Thermal Conductivity Measurement from 30-K to 750-K—The 3-Omega Method
,”
Rev. Sci. Instrum.
,
61
, pp.
802
808
.
91.
Lee
,
S. M.
, and
Cahill
,
D. G.
,
1997
, “
Heat Transport in Thin Dielectric Films
,”
J. Appl. Phys.
,
81
, pp.
2590
2595
.
92.
Borca-Tasciuc
,
T.
,
Kumar
,
R.
, and
Chen
,
G.
,
2001
, “
Data Reduction in 3ω Method for Thin Film Thermal Conductivity Measurements
,”
Rev. Sci. Instrum.
,
72
, pp.
2139
2147
.
93.
Cahill
,
D. G.
,
Fischer
,
H. E.
,
Klitsner
,
T.
,
Swartz
,
E. T.
, and
Pohl
,
R. O.
,
1989
, “
Thermal Conductivity of Thin Films: Measurement and Understanding
,”
J. Vac. Sci. Technol. A
,
A7
, pp.
1259
1266
.
94.
Hatta
,
I.
,
1990
, “
Thermal Diffusivity Measurement of Thin Films and Multilayered Composites
,”
Int. J. Thermophys.
,
11
, pp.
293
303
.
95.
Volklein, F., and Starz, T., 1997, “Thermal Conductivity of Thin Films—Experimental Methods and Theoretical Interpretation,” Proc. Int. Conf. Thermoelectrics, ICT’97, pp. 711–718.
96.
Goodson
,
K. E.
, and
Ju
,
Y. S.
,
1999
, “
Heat Conduction in Novel Electronic Films
,”
Annu. Rev. Mater. Sci.
,
29
, pp.
261
293
.
97.
Yang, B., Liu, J. L., Wang, K. L., and Chen, G., 2002, “Simultaneous Measurements of Seebeck Coefficient and Thermal Conductivity Across Superlattices,” Appl. Phys. Lett., in press.
98.
Fleurial, J.-P., Snyder, G. J., Herman, J. A., Giauque, P. H., et al. 1999, “Thick-Film Thermoelectric Microdevices,” Proc. Int. Conf. Thermoelectrics, ICT’99, pp. 294–300.
99.
Kishi, M., Yoshida, Y., Okano, H., Nemoto, H., Funanami, Y., Yamamoto, M., and Kanazawa, H., 1997, “Fabrication of a Miniature Thermoelectric Module with Elements Composed of Sintered Bi-Te Compounds,” Proc. Int. Conf. Thermoelectrics, ICT’97, pp. 653–656.
100.
Rushing, L., Shakouri, A., Abraham, P., and Bowers, J. E., 1997, “Micro Thermoelectric Coolers for Integrated Applications,” Proc. Int. Conf. Thermoelectrics, ICT’97, pp. 646–649.
101.
Volklein, F., Blumers, M., and Schmitt, L., “Thermoelectric Microsensors and Microactuators (MEMS) Fabricated by Thin Film Technology and Micromachining,” Proc. Int. Conf. Thermoelectrics, ICT’99, pp. 285–293.
102.
Yao, D.-J., Kim, C.-J., and Chen, G., 2002, “Design of Thermoelectric Thin Film Coolers,” ASME HTD-Vol. 366-2, pp. 245–251.
103.
Dutta
,
N. K.
,
Cella
,
T.
,
Brown
,
R. L.
, and
Huo
,
D. T. C.
,
1985
, “
Monolithically Integrated Thermoelectric Controlled Laser Diode
,”
Appl. Phys. Lett.
,
47
, pp.
222
224
.
104.
Chen
,
G.
,
1996
, “
Heat Transfer in Micro- and Nanoscale Photonic Devices
,”
Annu. Rev. Heat Transfer
,
7
, pp.
1
57
.
105.
Piprek
,
J.
,
Akulova
,
Y. A.
,
Babic
,
D. I.
,
Coldren
,
L. A.
, and
Bowers
,
J. E.
,
1998
, “
Minimum Temperature Sensitivity of 1.55 μm Vertical-Cavity Lasers at 30 nm Gain Offset
,”
Appl. Phys. Lett.
,
72
, pp.
1814
1816
.
106.
Berger
,
P. R.
,
Dutta
,
N. K.
,
Choquette
,
K. D.
,
Hasnain
,
G.
, and
Chand
,
N.
,
1991
, “
Monolithically Peltier-Cooled Vertical-Cavity Surface-Emitting Lasers
,”
Appl. Phys. Lett.
,
59
, pp.
117
119
.
107.
Corser, T. A., 1991, “Qualification and Reliability of Thermoelectric Coolers for Use in Laser Modules,” 41st Electronic Components and Technology Conference, Atlanta, GA, USA, May, pp. 150–156.
108.
Cheng, Y.-K., Tsai, C.-H., Teng, C.-C., and Kang, S.-M., 2000, Electrothermal Analysis of VLSI Systems, Kluwer Academic Publishers.
109.
Kishi, M., Nemoto, H., Hamao, T., Yamamoto, M., Sudou, S., Mandai, M., and Yamamoto, S., 1999, “Micro Thermoelectric Modules and Their Application to Wristwatches as an Energy Source,” Proc. Int. Conf. Thermoelectrics, ICT’99, pp. 301–307.
You do not currently have access to this content.