The Planck mean absorption coefficient, ap, has been calculated for HBr, HCl, and HF over a temperature range from 300 K–2300 K using data from the 1996 edition of the HITRAN molecular database. Plots of ap versus temperature showed monotonically decreasing behavior over this temperature range, with peak values at 300 K of 45.9 (atm-m)−1, 5.3 (atm-m)−1, and 1.95 (atm-m)−1 for HF, HCl, and HBr, respectively. The magnitude of these values suggests that HBr, HCl, and HF can significantly impact calculations of radiative transfer in flames containing these species. Two sets of additional calculations were performed for CO to validate the methodology used for calculation of ap for HBr, HF, and HCl. In the first approach, which employed the narrow band model RADCAL, the calculation procedure was similar to that of the present calculations. The second approach utilized tabulated values of the integrated intensity for each CO band and an average value of the Planck function within each band. Results from the three methods showed general agreement. Polynomial expressions are provided as fits to ap as a function of temperature for HBr, HCl, HF, and CO.

1.
DeRis, J., 1979, “Fire Radiation-A Review,” Seventeenth Symposium (International) on Combustion/The Combustion Institute, pp. 1003–1015.
2.
Siegel, R., and Howell, J. R., 1992, Thermal Radiation Heat Transfer, Hemisphere Publishing, Washington.
3.
Grosshandler, W. L., 1993, “RADCAL: A Narrow-Band Model for Radiation Calculations in a Combustion Environment,” NIST Technical Note 1402, National Institute of Standards and Technology, Gaithersburg MD.
4.
Abu-Romia
,
M. M.
, and
Tien
,
C. L.
,
1967
, “
Appropriate Mean Absorption Coefficients for Infrared Radiation of Gases
,”
ASME J. Heat Transfer
,
89
, pp.
321
327
.
5.
Tien, C. L., 1968, “Thermal Radiation Properties of Gases,” Advances in Heat Transfer, Irvine, T. F., and Hartnett, J. P., eds., Academic Press, New York, 5, pp. 253–324.
6.
Grosshandler
,
W. L.
, and
Thurlow
,
E. M.
,
1992
, “
Generalized State-Property Relations for Nonluminous Flame Absorption Coefficients
,”
ASME J. Heat Transfer
,
114
, pp.
243
249
.
7.
Yang
,
M. H.
,
Hamins
,
A.
, and
Puri
,
I. K.
,
1994
, “
The Structure of Inhibited Counterflowing Nonpremixed Flames
,”
Combust. Flame
,
107
, pp.
107
122
.
8.
Masri
,
A. R.
,
1994
, “
Chemical Inhibition of Nonpremixed Flames of Hydrocarbon Fuels with CF3Br,
Combust. Sci. Technol.
,
96
, pp.
189
212
.
9.
Maruta
,
K.
,
Masaharu
,
Y.
,
Hongsheng
,
G.
,
Yiguang
,
J.
, and
Niioka
,
T.
,
1998
, “
Extinction of Low-Stretched Diffusion Flame in Microgravity
,”
Combust. Flame
,
112
, pp.
181
187
.
10.
Choi, M. Y., Hamins, A., Rushmeier, H., and Kashiwagi, T., 1994, “Simultaneous Optical Measurement of Soot Volume Fraction, Temperature, and CO2 in Heptane Pool Fire,” Twenty-Fifth Symposium (International) on Combustion/The Combustion Institute, pp. 1471–1480.
11.
Rothman
,
L. S.
,
Rinsland
,
C. P.
,
Goldman
,
A.
,
Massie
,
S. T.
,
Edwards
,
D. P.
,
Flaud
,
J. M.
,
Perrin
,
A.
,
Camy-Peyret
,
C.
,
Dana
,
V.
,
Mandin
,
J. Y.
,
Schroeder
,
J.
,
McCann
,
A.
,
Gamache
,
R. R.
,
Wattson
,
R. B.
,
Yoshino
,
K.
,
Chance
,
K. V.
,
Jucks
,
K. W.
,
Brown
,
L. R.
,
Nemtchinov
,
V.
, and
Varanasi
,
P.
,
1998
, “
The HITRAN Molecular Spectroscopic Database and HAWKS (HITRAN Atmospheric Workstation): 1996 Edition
,”
J. Quant. Spectrosc. Radiat. Transf.
,
60
, pp.
665
710
.
12.
HITRAN-PC User’s Manual, 1994, The University of South Florida, Tampa, FL.
13.
Malkmus
,
W.
, and
Thomson
,
A.
,
1961
, “
Infrared Emissivity of Diatomic Gases for the Anharmonic Vibrating-Rotator Model
,”
J. Quant. Spectrosc. Radiat. Transf.
,
2
, pp.
17
39
.
14.
Benedict, W. S., and Plyler, E. K., 1954, “High-Resolution Spectra of Hydrocarbon Flames,” Energy Transfer in Hot Gases, NBS Circular No. 523, Washington, D.C., p. 57–73.
15.
Varghese
,
P. L.
, and
Hanson
,
R. K.
,
1980
, “
Tunable Infrared Diode Laser Measurements of Line Strengths and Collision Widths of 12C 16O at Room Temperature
,”
J. Quant. Spectrosc. Radiat. Transf.
,
24
, pp.
479
489
.
16.
Breeze
,
J. C.
,
Ferriso
,
C. C.
,
Ludwig
,
C. B.
, and
Malkmus
,
W.
,
1965
, “
Temperature Dependence of the Total Integrated Intensity of Vibrational-Rotational Band Systems
,”
J. Chem. Phys.
,
42
, No.
1
, pp.
402
406
.
17.
http://www.ca.sandia.gov/tdf/Workshop/Submodels.html
18.
Breeze
,
J. C.
, and
Ferriso
,
C. C.
,
1965
, “
Integrated Intensity Measurements on the Fundamental and First Overtone Band Systems of CO Between 2500° and 5000°K
,”
J. Chem. Phys.
,
43
, No.
9
, pp.
3253
3258
.
19.
Rothman, L. S., Wattson, R. B., Gamache, R. R., Goorvitch, D., Hawkins, R. L., Selby, J. E. A., Camy-Peyret, C., Flaud, J.-M., Goldman, A., and Schroeder, J., “
HITEMP, the High-Temperature Molecular Spectroscopic Database,” J. Quant. Spectrosc. Radiat. Transf., in preparation.
20.
Pinnock
,
S.
, and
Shine
,
K. P.
,
1998
, “
The Effects of Changes in HITRAN and Uncertainties in the Spectroscopy on Infrared Radiance Calculations
,”
J. Atmos. Sci.
,
55
, pp.
1950
1964
.
21.
Chou
,
S.
,
Baer
,
D. S.
, and
Hanson
,
R. K.
,
1999
, “
Spectral Intensity and Lineshape Measurements in the First Overtone Band of HF Using Tunable Diode Lasers
,”
J. Mol. Spectrosc.
,
195
, pp.
123
131
.
22.
Chou
,
S.
,
Baer
,
D. S.
, and
Hanson
,
R. K.
,
1999
, “
High-Resolution Measurements of HBr Transitions in the First Overtone Band Using Tunable Diode Lasers
,”
J. Mol. Spectrosc.
,
200
, pp.
138
142
.
You do not currently have access to this content.