An analytical solution is reported for the temperature distribution in finite span thin-gap Couette devices which accounts for viscous dissipation. Taken in conjunction with an established solution for the stable velocity profile, this result describes the standard experimental configuration where no external heat fluxes are applied. We discuss physical aspects as well as conditions for which classical one-dimensional theory should be replaced by the present result.

1.
Taylor
,
G. I.
,
1923
, “
Stability of a Viscous Liquid Contained Between Two Rotating Cylinders
,”
Philos. Trans. R. Soc. London, Ser. A
,
223
, pp.
289
343
.
2.
Kobayashi
,
H.
,
Nashima
,
T.
,
Okamoto
,
Y.
, and
Kaminaga
,
F.
,
1991
, “
End Effect in a Coaxial Cylindrical Viscometer
,”
Rev. Sci. Instrum.
,
62
, pp.
2748
2750
.
3.
Ameer
,
G. A.
,
Barabino
,
G.
,
Sasisekharan
,
R.
,
Harmon
,
W.
,
Cooney
,
C. L.
, and
Langer
,
R.
,
1999
, “
Ex Vivo Evaluation of a Taylor–Couette Flow, Immobilized Heparinase I Device for Clinical Application
,”
Proc. Natl. Acad. Sci. U.S.A.
,
96
, pp.
2350
2355
.
4.
Criminale
,
W. O.
,
Jackson
,
T. L.
,
Lasseigne
,
D. G.
, and
Joslin
,
R. D.
,
1997
, “
Perturbation Dynamics in Viscous Channel Flows
,”
J. Fluid Mech.
,
339
, pp.
55
75
.
5.
Nagata
,
M.
,
1997
, “
Three-Dimensional Traveling-Wave Solutions in Plane Couette Flow
,”
Phys. Rev. E
,
55
, pp.
2023
2025
.
6.
Waleffe
,
F.
,
1997
, “
On a Self-Sustaining Process in Shear Flows
,”
Phys. Fluids
,
9
, pp.
883
900
.
7.
Yueh
,
C.-S.
, and
Weng
,
C.-L.
,
1996
, “
Linear Stability Analysis of Plane Couette Flow With Viscous Heating
,”
Phys. Fluids
,
8
, pp.
1802
1813
.
8.
Davis
,
S. H.
,
Kreigsmann
,
G. A.
,
Laurence
,
R. L.
, and
Rosenblat
,
S.
,
1983
, “
Multiple Solutions and Hysteresis in Steady Parallel Viscous Flows
,”
Phys. Fluids
,
26
, pp.
1177
1182
.
9.
Johns
,
L. E.
, and
Narayan
,
R.
,
1997
, “
Frictional Heating in Plane Couette Flow
,”
Proc. R. Soc. London, Ser. A
,
453
, pp.
1653
1670
.
10.
Caridis
,
K. A.
,
Louwagie
,
B.
, and
Papathanasiou
,
T. D.
,
1997
, “
Viscous Heating in Planar Couette Flow: Series Solutions for Temperature-Sensitive Fluids
,”
J. Chem. Eng. Jpn.
,
30
, pp.
123
136
.
11.
Bird, R. B., Armstrong, R. C., and Hassager, O., 1977, Dynamics of Polymeric Liquids, Wiley, New York.
12.
Benjamin
,
T. B.
,
1978
, “
Bifurcation Phenomena in Steady Flows of a Viscous Fluid II. Experiments
,”
Proc. R. Soc. London, Ser. A
,
359
, pp.
27
43
.
13.
Benjamin
,
T. B.
, and
Mullin
,
T.
,
1981
, “
Anomalous Modes in the Taylor Experiment
,”
Proc. R. Soc. London, Ser. A
,
377
, pp.
221
249
.
14.
Aitta
,
A.
,
Ahlers
,
G.
, and
Cannell
,
D. S.
,
1985
, “
Tricritical Phenomena in Rotating Couette-Taylor Flow
,”
Phys. Rev. Lett.
,
54
, pp.
673
676
.
15.
Berker, R., 1963, “Inte´gration des e´quations du mouvement d’un fluide visqueux incompressible,” in Handbuch der Physik, Vol. VIII/2, S. Flu¨gge, ed., Springer-Verlag, Berlin, pp. 1–384.
16.
Schlichting, H., 1979, Boundary Layer Theory, McGraw-Hill, New York.
17.
Cotta, R. M., 1993, Integral Transforms in Computational Heat and Fluid Flow, CRC Press, Boca Raton.
18.
Wendl
,
M. C.
,
1999
, “
General Solution for the Couette Flow Profile
,”
Phys. Rev. E
,
60
, pp.
6192
6194
.
19.
O¨zis¸ik, M. N., 1980, Heat Conduction, Wiley, New York.
20.
Sokolnikoff, I. S., and Sokolnikoff, E. S., 1941, Higher Mathematics for Engineers and Physicists, McGraw-Hill, New York.
21.
Roache
,
P. J.
,
1997
, “
Quantification of Uncertainty in Computational Fluid Dynamics
,”
Annu. Rev. Fluid Mech.
,
29
, pp.
123
160
.
You do not currently have access to this content.