The process of freeze coating of a binary substance on a chilled moving plate is studied theoretically with special emphasis on the behavior of the two-phase mushy zone. The flow and heat transfer in five separate regions of the system, i.e., the moving plate, the freeze coat, the two-phase packing region, the two-phase dispersed region and the molten substance region, are formulated mathematically to describe the freeze-coating process. A supplemental equation derived from a simplified phase diagram and an appropriate viscosity model are employed to complete the mathematical description of the two-phase mushy zone. The system of equations is solved by a combined analytical-numerical technique to determine the spatial variations of the solidus and liquidus fronts. Effects of seven controlling parameters, including the freeze coat-to-wall thermal ratio, the wall subcooling parameter, the molten substance superheating parameter, the Prandtl number, the Stefan number, the equilibrium partition ratio, and the packing limit fraction, on the behavior of the two-phase mushy zone and the freeze-coating process are determined.

1.
Kuiken
,
H. K.
,
1977
, “
Solidification of a Liquid on Moving Sheet
,”
Int. J. Heat Mass Transf.
,
20
, pp.
309
314
.
2.
Seeniraj
,
R. V.
, and
Bose
,
T. K.
,
1981
, “
Freeze-Coating on a Continuous Moving Sheet and an Axially Moving Cylinder
,”
Warme Stoffubertrag
,
15
, pp.
239
243
.
3.
Cheung
,
F. B
,
1985
, “
Analysis of Freeze Coating on a Non-Isothermal Moving Plate by a Perturbation Method
,”
ASME J. Heat Transfer
,
107
, pp.
549
556
.
4.
Cheung
,
F. B.
,
1987
, “
Thermal Boundary Layer on a Continuous Moving Plate With Freezing
,”
AIAA J. Thermophys & Heat Transfer
,
1
, pp.
335
342
.
5.
Rezaian
,
A.
, and
Poulikakos
,
D.
,
1991
, “
Heat and Fluid Flow Process During the Coating of a Moving Surface
,”
AIAA J. Thermophys & Heat Transfer
,
5
, pp.
192
198
.
6.
Mahmound
,
K. G.
,
1993
, “
Heat Transfer with Moving Boundary-Application to Transient Solidification of Warm Liquid on a Moving Cold Plate
,”
Comput. Chem. Eng.
,
17
, pp.
705
715
.
7.
Cheung
,
F. B.
, and
Cha
,
S. W.
,
1987
, “
Finite-Difference Analysis of Growth and Decay of a Freeze Coat on a Continuous Moving Cylinder
,”
Numer. Heat Transfer
,
12
, pp.
41
56
.
8.
Cheung
,
F. B.
,
Pellizzari
,
R. O.
, and
Cha
,
S. W.
,
1990
, “
An Experimental Study of Freeze Coating on a Chilled Axially Moving Wire
,”
Exp. Therm. Fluid Sci.
,
3
, pp.
431
439
.
9.
Stevens
,
R.
, and
Poulikakos
,
D.
,
1991
, “
Freeze Coating of a Moving Substrate With a Binary Alloy
,”
Numer. Heat Transfer, Part A
,
20
, pp.
409
432
.
10.
Krieger
,
I. M.
,
1972
, “
Rheology of Monodisperse Lactices
,”
Adv. Colloid Interface Sci.
,
3
, pp.
111
126
.
11.
Ni
,
J.
, and
Beckermann
,
C.
,
1991
, “
A Volume-Averaged Two-Phase Model for Transport Phenomena During Solidification
,”
Metall. Trans. B
,
22B
, pp.
339
361
.
12.
Fukusako
,
S.
,
Yamada
,
M.
,
Horibe
,
A.
, and
Kawai
,
A.
,
1995
, “
Solidification of Aqueous Binary Solution on a Vertical Cooled Plate with Main Flow
,”
Heat and Mass Transfer
,
30
, pp.
127
134
.
13.
Cheung
,
F. B.
, and
Epstein
,
M.
,
1984
, “
Solidification and Melting in Fluid Flow
,”
Advances in Transport Processes
,
3
, pp.
35
117
, Wiley Eastern, New Delhi.
14.
Voller
,
V. R.
,
Brent
,
A. D.
, and
Prakash
,
C.
,
1989
, “
The Modelling of Heat, Mass and Solute Transport in Solidification Systems
,”
Int. J. Heat Mass Transf.
,
32
, pp.
1719
1731
.
15.
Wang
,
C. Y.
, and
Beckermann
,
C.
,
1996
, “
Equiaxed Dendritic Solidification With Convection: Part 1. Multi-Scale/-Phase Modeling
,”
Metall. Mater. Trans. A
,
27A
, pp.
2754
2764
.
16.
Gao
,
J.
, and
Wang
,
C. Y.
,
1999
, “
An Experimental Investigation Into the Effects of Grain Transport on Columnar-to Equiaxed Transition During Dendritic Alloy Solidification
,”
ASME J. Heat Transfer
,
121
, pp.
430
437
.
17.
Yamada
,
M.
,
Fukusako
,
S.
,
Tago
,
M.
, and
Horibe
,
A.
,
1993
, “
Freezing Characteristic Along a Horizontal Cooled Tube Immersed in Aqueous Binary Solution With Main Flow
,”
ASME J. Eng. Mater. Technol.
,
115
, pp.
54
62
.
18.
Paradies
,
C. J.
,
Smith
,
R. N.
, and
Glicksman
,
M. E.
,
1997
, “
The Influence of Convection During Solidification on Fragmentation of the Mushy Zone of a Model Alloy
,”
Metall. Mater. Trans. A
,
28A
, pp.
875
883
.
19.
Kuznetsov, A. V., 1998, “Horizontal Continuous Casting of Thin Aluminum Strips-Numerical Modeling and Simulation,” Advances in Aluminum Casting Technology, Materials Solution Conference ’98 on Aluminum Casting Technology, M. Tiryakioglu and J. Campbell, eds., Rosemont, IL, pp. 251–258.
20.
Flemings, M. C., 1974, Solidification Processing, McGraw-Hill, New York.
21.
Einstein, A., 1906, “Eine neue Bestimmung der Molekuldimension,” Ann. Physik., 19, pp. 289–306.
22.
Krieger
,
I. M.
, and
Daugherty
,
T. J.
,
1959
, “
A Mechanism of Non-Newtonian Flow in Suspensions of Rigid Spheres
,”
Trans. Soc. Rheol.
,
3
, pp.
137
152
.
23.
Barnes, H. A., Hutton, J. F., and Walters, K., 1989, An Introduction to Rheology, Elsevier, Amsterdam.
You do not currently have access to this content.