This paper describes the main features and results of a numerical investigation of molten microdroplet impact and solidification on a colder flat substrate of the same material that melts due to the energy input from the impacting molten material. The numerical model is based on the axisymmetric Lagrangian Finite-Element formulation of the Navier–Stokes, energy and material transport equations. The model accounts for a host of complex thermofluidic phenomena, exemplified by surface tension effects and heat transfer with solidification in a severely deforming domain. The dependence of the molten volume on time is determined and discussed. The influence of the thermal and hydrodynamic initial conditions on the amount of substrate melting is discussed for a range of superheat, Biot number, and impact velocity. Multidimensional and convective heat transfer effects, as well as material mixing between the droplet and the substrate are found and quantified and the underlying physics is discussed. Good agreement in the main features of the maximum melting depth boundary between the present numerical results and published experiments of other investigators for larger (mm-size) droplets was obtained, and a complex mechanism was identified, showing the influence of the droplet fluid dynamics on the substrate melting and re-solidification.

1.
Attinger, D., Haferl, S., Zhao, Z., and Poulikakos, D., 2000, “Transport Phenomena in the Impact of a Molten Droplet on a Surface: Macroscopic Phenomenology and Microscopic Considerations: Part II—Heat Transfer and Solidification,” in Annual Review of Heat Transfer, C. L., Tien, ed., Vol. XI, Begell House, NY, pp. 145–205.
2.
Haferl, S., Zhao, Z., Giannakouros, J., Attinger, D., and Poulikakos, D., 2000, “Transport Phenomena in the Impact of a Molten Droplet on a Surface: Macroscopic Phenomenology and Microscopic Considerations: Part I—Fluid Dynamics,” in Annual Review of Heat Transfer, C. L., Tien, ed., Vol. XI, Begell House, NY, pp. 65–143.
3.
Zarzalejo
,
L. J.
,
Schmaltz
,
K. S.
, and
Amon
,
C. H.
,
1999
, “
Molten Droplet Solidification and Substrate Remelting in Microcasting: Part I—Numerical Modeling and Experimental Verification
,”
Heat and Mass Transfer
,
34
, pp.
477
485
.
4.
Orme, M., Liu, Q., and Fischer, J., 2000, “Mono-Disperse Aluminum Droplet Generation and Deposition for Net-Form Manufacturing of Structural Components,” in Eighth International Conference on Liquid Atomization and Spray Systems, Pasadena, CA, USA, July 2000, pp. 200–207.
5.
Amon
,
C. H.
,
Schmaltz
,
K. S.
,
Merz
,
R.
, and
Prinz
,
F. B.
,
1996
, “
Numerical and Experimental Investigation of Interface Bonding via Substrate Remelting of an Impinging Molten Metal Droplet
,”
ASME J. Heat Transfer
,
118
, pp.
164
172
.
6.
Wang
,
G. X.
, and
Matthys
,
E. F.
,
1996
, “
Experimental Investigation of Interfacial Thermal Conductance for Molten Metal Solidification on a Substrate
,”
ASME J. Heat Transfer
,
118
, pp.
157
163
.
7.
Madejski
,
J.
,
1976
, “
Solidification of Droplets on a Cold Surface
,”
Int. J. Heat Mass Transf.
,
19
, pp.
1009
1013
.
8.
Kang
,
B.
,
Waldvogel
,
J.
, and
Poulikakos
,
D.
,
1995
, “
Remelting Phenomena in the Process of Splat Solidification
,”
J. Mater. Sci.
,
30
, pp.
4912
4925
.
9.
Rangel
,
R. H.
, and
Bian
,
X.
,
1997
, “
Metal-Droplet Deposition Model Including Liquid Deformation and Substrate Remelting
,”
Int. J. Heat Mass Transf.
,
40
, pp.
2549
2564
.
10.
Wang
,
S.-P.
,
Wang
,
G.-X.
, and
Matthys
,
E. F.
,
1998
, “
Melting and Resolidification of a Substrate in Contact with a Molten Metal: Operational Maps
,”
Int. J. Heat Mass Transf.
,
41
, No.
10
, pp.
1177
1188
.
11.
Jones
,
H.
,
1971
, “
Cooling, Freezing and Substrate Impact of Droplets Formed by Rotary Atomization
,”
J. Phys. D
,
4
, pp.
1657
1660
.
12.
Bennett
,
T.
, and
Poulikakos
,
D.
,
1994
, “
Heat Transfer Aspects of Splat-Quench Solidification: Modeling and Experiment
,”
J. Mater. Sci.
,
29
, pp.
2025
2039
.
13.
Madejski
,
J.
,
1983
, “
Droplets on Impact with a Solid Surface
,”
Int. J. Heat Mass Transf.
,
26
, pp.
1095
1098
.
14.
Mcpherson
,
R.
,
1980
, “
On the Formation of Thermally Sprayed Alumina Coatings
,”
J. Mater. Sci.
,
15
, pp.
3141
3149
.
15.
Waldvogel
,
J. M.
, and
Poulikakos
,
D.
,
1997
, “
Solidification Phenomena in Picoliter Size Solder Droplet Deposition on a Composite Substrate
,”
Int. J. Heat Mass Transf.
,
40
, No.
2
, pp.
295
309
.
16.
Attinger
,
D.
,
Zhao
,
Z.
, and
Poulikakos
,
D.
,
2000
, “
An Experimental Study of Molten Microdroplet Surface Deposition And Solidification: Transient Behavior and Wetting Angle Dynamics
,”
Int. J. Heat Mass Transf.
,
122
, No.
3
, pp.
544
556
.
17.
Waldvogel
,
J. M.
,
Diversiev
,
G.
,
Poulikakos
,
D.
,
Megaridis
,
C. M.
,
Attinger
,
D.
,
Xiong
,
B.
, and
Wallace
,
D. B.
,
1998
, “
Impact and Solidification of Molten-Metal Droplets on Electronic Substrates
,”
ASME J. Heat Transfer
,
120
, p.
539
539
.
18.
Xiong
,
B.
,
Megaridis
,
C. M.
,
Poulikakos
,
D.
, and
Hoang
,
H.
,
1998
, “
An Investigation of Key Factors Affecting Solder Microdroplet Deposition
,”
ASME J. Heat Transfer
,
120
, No.
1
, pp.
259
270
.
19.
Bach
,
P.
, and
Hassager
,
O.
,
1985
, “
An Algorithm for the Use of the Lagrangian Specification in Newtonian Fluid Mechanics and Applications to Free-Surface Flow
,”
J. Fluid Mech.
,
152
, pp.
173
190
.
20.
Fukai
,
J.
,
Zhao
,
Z.
,
Poulikakos
,
D.
,
Megaridis
,
C. M.
, and
Miyatake
,
O.
,
1993
, “
Modeling of the Deformation of a Liquid Droplet Impinging upon a Flat Surface
,”
Phys. Fluids A
,
5
, pp.
2588
2599
.
21.
Landau, L. D., and Lifshitz, E. M., 1959, Fluid Mechanics, Course of Theoretical Physics, Pergamon, Tarrytown, NY.
22.
Bushko
,
W.
, and
Grosse
,
I. R.
,
1991
, “
New Finite Element Method for Multidimensional Phase Change Heat Transfer Problems
,”
Numer. Heat Transfer, Part B
,
19
, pp.
31
48
.
23.
Haferl, S., Butty, V., Poulikakos, D., Giannakouros, J., Boomsma, K., Megaridis, C. M., and Nayagam, V., 2000, “Freezing of Molten Solder Droplets Impacting onto Flat Substrates in Microgravity,” in 2000 International Mechanical Engineering Congress and Exhibition, Orlando, FL.
24.
Hayes, D. J., Wallace, D. B., and Boldman, M. T., 1992, “Picoliter Solder Droplet Dispension,” in ISHM Symposium 92 Proceedings, pp. 316–321.
25.
Hayes
,
D. J.
, and
Wallace
,
D. B.
,
1998
, “
Solder Jet Printing: Wafer Bumping and CSP Applications
,”
Chip Scale Review
,
2
, No.
4
, pp.
75
80
.
26.
Kang
,
B.
,
Zhao
,
Z.
, and
Poulikakos
,
D.
,
1994
, “
Solidification of Liquid Metal Droplets Impacting Sequentially on a Solid Surface
,”
ASME J. Heat Transfer
,
116
, pp.
436
445
.
27.
Murr, L. E., 1975, Interfacial Phenomena in Metals and Alloys, Addison-Wesley, Reading, MA.
28.
Toh, T., 2000, personal communication, Steel Research Laboratories, Nippon Steel, Japan.
29.
Miettinen
,
J.
,
1997
, “
Calculation of Solidification-Related Thermophysical Properties for Steels
,”
Metall. Mater. Trans. B
,
28B
, pp.
281
297
.
30.
Zhao
,
Z.
,
Poulikakos
,
D.
, and
Fukai
,
J.
,
1996
, “
Heat Transfer and Fluid Dynamics During the Collision of a Liquid Droplet on a Substrate: II-Experiments
,”
Int. J. Heat Mass Transf.
,
39
, pp.
2791
2802
.
31.
Zhao
,
Z.
,
Poulikakos
,
D.
, and
Fukai
,
J.
,
1996
, “
Heat Transfer and Fluid Dynamics During the Collision of a Liquid Droplet on a Substrate: I-Modeling
,”
Int. J. Heat Mass Transf.
,
39
, pp.
2771
2789
.
You do not currently have access to this content.