The ambiguity and incorrect treatment of the evaporation term among some LII models in the literature are discussed. This study does not suggest that the correct formulation presented for the evaporation model is adequate, or that it reflects the soot evaporation process under intense evaporation. The emphasis is that the current evaporation model must be used correctly in the evaluation of the LII model against experimental data. Numerical results are presented to demonstrate the significance of the molecular weight associated with the heat of evaporation and the thermal velocity of carbon vapor on the results obtained with the evaporation model. Other errors frequently repeated in the literature are also identified.

1.
Eckbreth
,
A. C.
,
1977
, “
Effects of Laser-Modulated Particulate Incandescence on Raman Scattering Diagnostics
,”
J. Appl. Phys.
,
48
, pp.
4473
4479
.
2.
Melton
,
L. A.
,
1984
, “
Soot Diagnostics Based on Laser Heating
,”
Appl. Opt.
,
23
, pp.
2201
2208
.
3.
Dasch, C. J., 1984, “New Soot Diagnostics in Flames Based on Laser Vaporization of Soot,” Twentieth Symposium (International) on Combustion, The Combustion Institute, pp. 1231–1237.
4.
Tait, N. P., and Greenhalgh, D. A., 1993, “PLIF Imaging of Fuel Fraction in Practical Devices and LII Imaging of Soot,” Berichte der Bunsengesellschaft fuer Physikalische Chemie, 97, pp. 1619–1625.
5.
Hofeldt, D. L., 1993, “Real-Time Soot Concentration Measurement Technique for Engine Exhaust Streams,” Society of Automotive Engineers, SAE Paper No. 930079.
6.
Mewes
,
B.
, and
Seitzman
,
J. M.
,
1997
, “
Soot Volume Fraction and Particle Size Measurements with Laser-Induced Incandescence
,”
Appl. Opt.
36
, pp.
709
717
.
7.
Snelling, D. R., Smallwood, G. J., Campbell, I. G., Medlock, J. E., and Gu¨lder, O¨. L., 1997, “Development and Application of Laser-Induced Incandescence (LII) as a Diagnostic for Soot Particulate Measurements,” Advanced Non-Intrusive Instrumentation for Propulsion Engines, AGARD Conference Proceedings 598, pp. 23-21 to 23-29.
8.
McManus, K. R., Frank, J. H., Allen, M. G., and Rawlins, W. T., 1998, “Characterization of Laser-Heated Soot Particles Using Optical Pyrometry,” AIAA Paper No. 98-0159.
9.
Will
,
S.
,
Schraml
,
S.
,
Bader
,
K.
, and
Leipertz
,
A.
,
1998
, “
Performance Characteristics of Soot Primary Particle Size Measurements by Time-Resolved Laser-Induced Incandescence
,”
Appl. Opt.
,
37
, pp.
5647
5658
.
10.
Snelling, D. R., Liu, F., Smallwood, G. J., and Gu¨lder, O¨. L., 2000, “Evaluation of the Nanoscale Heat and Mass Transfer Model of the Laser-Induced Incandescence: Prediction of the Excitation Intensity,” Thirty Fourth National Heat Transfer Conference, NHTC2000-12132.
11.
Schraml
,
S.
,
Dankers
,
S.
,
Bader
,
K.
,
Will
,
S.
, and
Leipertz
,
A.
,
2000
, “
Soot Temperature Measurements and Implications for Time-Resolved Laser-Induced Incandescence (Tire-LII)
,”
Combust. Flame
,
120
, pp.
439
450
.
12.
Leider
,
H. R.
,
Krikorian
,
O. H.
, and
Young
,
D. A.
,
1973
, “
Thermodynamic Properties of Carbon up to the Critical Point
,”
Carbon
,
11
, pp.
555
563
.
13.
Kennard, E. H., 1938, Kinetic Theory of Gases, McGraw Hill Book Company, New York, pp. 63–69.
14.
Tsederburg, N. V., 1965, Thermal Conductivity of Gases and Liquids, The M.I.T Press, Cambridge, MA, p. 89.
15.
Lee, S. C., and Tien, C. L., 1981, “Optical Constants of Soot in Hydrocarbon Flames,” Eighteenth Symposium (International) on Combustion, The Combustion Institute, pp. 1159–1166.
16.
Chase, M. W., Jr., Davies, C. A., Downey, J. R., Jr., Frurip, D. J., McDonald, R. A., and Syverud, A. N., 1985, “JANAF Thermochemical Tables,” Third Edition, Journal of Physical and Chemical Reference Data, 14, Suppl. 1.
17.
Ni
,
T.
,
Pinson
,
J. A.
,
Gupta
,
S.
, and
Santoro
,
R. J.
,
1995
, “
Two-Dimensional Imaging of Soot Volume Fraction by the Use of Laser-Induced Incandescence
,”
Appl. Opt.
,
34
, pp.
7083
7091
.
You do not currently have access to this content.