The Boltzmann Transport Equation (BTE) for phonons best describes the heat flow in solid nonmetallic thin films. The BTE, in its most general form, however, is difficult to solve analytically or even numerically using deterministic approaches. Past research has enabled its solution by neglecting important effects such as dispersion and interactions between the longitudinal and transverse polarizations of phonon propagation. In this article, a comprehensive Monte Carlo solution technique of the BTE is presented. The method accounts for dual polarizations of phonon propagation, and non-linear dispersion relationships. Scattering by various mechanisms is treated individually. Transition between the two polarization branches, and creation and destruction of phonons due to scattering is taken into account. The code has been verified and evaluated by close examination of its ability or failure to capture various regimes of phonon transport ranging from diffusive to the ballistic limit. Validation results show close agreement with experimental data for silicon thin films with and without doping. Simulation results show that above 100 K, transverse acoustic phonons are the primary carriers of energy in silicon.

1.
Ziman, J. M., 1960, Electrons and Phonons, Oxford University Press, London.
2.
Kittel, C., 1986, Introduction to Solid State Physics, John Wiley & Sons Inc., Sixth Edition.
3.
Tien, C. L., Majumdar, A., and Gerner, F. M., eds., 1998, Microscale Energy Transport, Taylor and Francis.
4.
Ju
,
Y. S.
, and
Goodson
,
K. E.
,
1999
, “
Phonon Scattering in Silicon Films with Thickness of Order 100 nm
,”
Appl. Phys. Lett.
,
74
, No.
20
, pp.
3005
3007
.
5.
Klemens, P. G., 1958, “Thermal Conductivity and Lattice Vibrational Modes,” in Solid State Physics, 7, F. Seitz and D. Turnball, eds., Academic Press, NY.
6.
Callaway
,
J.
,
1959
, “
Model for Lattice Thermal Conductivity at Low Temperatures
,”
Phys. Rev.
,
113
, No.
4
, pp.
1046
1051
.
7.
Holland
,
M. G.
,
1963
, “
Analysis of Lattice Thermal Conductivity
,”
Phys. Rev.
,
132
, No.
6
, pp.
2461
2471
.
8.
Holland
,
M. G.
,
1964
, “
Phonon Scattering in Semiconductors from Thermal Conductivity Studies
,”
Phys. Rev.
,
134
, No.
2A
, pp.
A471–A480
A471–A480
.
9.
Bhandari
,
C. M.
, and
Verma
,
G. S.
,
1965
, “
Role of Longitudinal and Transverse Phonons in Lattice Thermal Conductivity of GaAs and InSb
,”
Phys. Rev.
,
140
, No.
6A
, pp.
A210–A214
A210–A214
.
10.
Guyer
,
R. A.
, and
Krumhansl
,
J. A.
,
1966
, “
Solution of the Linearized Phonon Boltzmann Equation
,”
Phys. Rev.
,
148
, No.
2
, pp.
766
778
.
11.
Hardy
,
R. J.
,
1970
, “
Phonon Boltzmann Equation and Second Sound in Solids
,”
Phys. Rev. B
,
2
, No.
4
, pp.
1193
1206
.
12.
Moglestue
,
C.
,
1982
, “
Monte Carlo Particle Modeling of Small Semiconductor Devices
,”
Comput. Methods Appl. Mech. Eng.
,
30
, pp.
173
208
.
13.
Jacoboni
,
C.
, and
Reggiani
,
L.
,
1983
, “
The Monte Carlo Method for the Solution of Charge Transport in Semiconductors with Applications to Covalent Materials
,”
Rev. Mod. Phys.
,
55
, No.
3
, pp.
642
705
.
14.
Lugli
,
P.
,
Bordone
,
P.
,
Reggiani
,
L.
,
Reiger
,
M.
,
Kocevar
,
P.
, and
Goodnick
,
S. M.
,
1989
, “
Monte Carlo Studies of Nonequilibrium Phonon Effects in Polar Semiconductors and Quantum Wells. I. Laser Photoexcitation
,”
Phys. Rev. B
,
39
, No.
11
, pp.
7852
7865
.
15.
Fischetti
,
M. V.
, and
Laux
,
S. E.
,
1988
, “
Monte Carlo Analysis of Electron Transport in Small Semiconductor Devices Including Band-Structure and Space-Charge Effects
,”
Phys. Rev. B
,
38
, No.
14
, pp.
9721
9745
.
16.
Fischetti
,
M. V.
, and
Laux
,
S. E.
,
1993
, “
Monte Carlo Study of Electron Transport in Silicon Inversion Layers
,”
Phys. Rev. B
,
48
, No.
4
, pp.
2244
2274
.
17.
Majumdar
,
A.
,
1993
, “
Microscale Heat Conduction in Dielectric Thin Films
,”
ASME J. Heat Transfer
,
115
, No.
7
, pp.
7
16
.
18.
Chen
,
G.
, and
Tien
,
C. L.
,
1993
, “
Thermal Conductivities of Quantum Well Structures
,”
J. Thermophys. Heat Transfer
,
7
, No.
2
, pp.
311
318
.
19.
Goodson
,
K. E.
,
1996
, “
Thermal Conduction in Nonhomogeneous CVD Diamond Layers in Electronic Microstructures
,”
ASME J. Heat Transfer
,
118
, pp.
279
286
.
20.
Chen
,
G.
,
1998
, “
Thermal Conductivity and Ballistic Phonon Transport in the Cross-Plane Direction of Superlattices
,”
Phys. Rev. B
,
57
, No.
23
, pp.
14958
14973
.
21.
Klistner
,
T.
,
VanCleve
,
J. E.
,
Henry
,
E. F.
, and
Pohl
,
R. O.
,
1988
, “
Phonon Radiative Heat Transfer and Surface Scattering
,”
Phys. Rev. B
,
38
, No.
11
, pp.
7576
7594
.
22.
Peterson
,
R. B.
,
1994
, “
Direct Simulation of Phonon-Mediated Heat Transfer in a Debye Crystal
,”
ASME J. Heat Transfer
,
116
, pp.
815
822
.
23.
Mavriplis, D. J., 1995, “Unstructured Mesh Generation and Adaptivity,” Institute for Computer Applications in Science and Engineering, Technical Report #TR-95-26.
24.
Cahill
,
D. G.
,
1997
, “
Heat Transport in Dielectric Thin Films and at Solid-Solid Interfaces
,”
Microscale Thermophys. Eng.
,
1
, pp.
85
109
.
25.
Sverdrup, P. G., Ju, Y. S., and Goodson, K. E., 1999, “Sub-Continuum Simulations of Heat Conduction in Silicon-on-Insulator Transistors,” IMECE 1999, Nashville, TN, HTD 363–3.
26.
Vincenti, W. G., and Kruger, C. H., 1977, Introduction to Physical Gas Dynamics, Robert Kreiger Publ., New York, NY.
27.
Waugh
,
J. L.
, and
Dolling
,
G.
,
1963
, “
Crystal Dynamics of Gallium Arsenide
,”
Phys. Rev.
,
132
, pp.
2410
2412
.
28.
Asheghi, M., 2000, “Thermal Transport Properties of Silicon Films,” Thesis in Mechanical Engineering, Stanford University.
29.
Brockhouse
,
B. N.
,
1959
, “
Lattice Vibrations in Silicon and Germanium
,”
Phys. Rev. Lett.
,
2
, pp.
256
256
.
30.
Klemens
,
P. G.
,
1981
, “
Theory of Lattice Thermal Conductivity: Role of Low-Frequency Phonons
,”
Int. J. Thermophys.
,
2
, No.
1
, pp.
55
62
.
You do not currently have access to this content.