Laser-induced melting and subsequent resolidification of a metal powder mixture consisting of low and high melting temperature materials was experimentally examined. First, the onset of melting for the low melting point material was determined and correlated with dimensionless parameters. Next, the morphologies of the heat affected zones were categorized and finally, a process map for use in rapid prototyping technology was developed. The results indicate a strong dependence of the system behavior on the laser-material coupling efficiency and in turn, the ratio of the laser beam radius to particle size.
Issue Section:
Heat Transfer in Manufacturing Processes
Keywords:
metals,
powder metallurgy,
mixtures,
melting,
heat treatment,
laser beam effects,
particle size
1.
Dosanjh
, S. S.
, 1989
, “Melt Propagation in Porous Media
,” Int. J. Heat Mass Transf.
, 32
, pp. 1373
–1376
.2.
Miller, R. D., 1980, “Freezing Phenomena in Soils,” Applications of Soil Physics, Academic Press, New York, pp. 254–318.
3.
Mughal, M. P., and Plumb, O. A., 1993, “Heat Transfer During Melting of Packed Particulate Beds,” Heat and Mass Transfer in Materials Processing and Manufacturing, D. A. Zumbrunnen et al., eds., ASME HTD Vol. 261, pp. 63–72.
4.
Agarwala
, M.
, Bourell
, D.
, Beaman
, J.
, Marcus
, H.
, and Barlow
, J.
, 1995
, “Direct Selective Laser Sintering of Metals
,” Rapid Prototyping Journal
, 1
, pp. 26
–36
.5.
Weiss
, W. L.
, and Bourell
, D. L.
, 1993
, “Selective Laser Sintering of Intermetallics
,” Metallurgical Transactions A-Physical Metallurgy and Materials Science
, 24
, pp. 757
–759
.6.
Conley
, J. G.
, and Marcus
, H. L.
, 1997
, “Rapid Prototyping and Solid Freeform Fabrication
,” ASME J. Manuf. Sci. Eng.
, 119
, pp. 811
–816
.7.
Kandis
, M.
, and Bergman
, T. L.
, 1997
, “Observation, Prediction and Correlation of Geometric Shape Evolution Induced by Non-Isothermal Sintering of Polymer Powder
,” ASME J. Heat Transfer
, 119
, pp. 824
–831
.8.
Kandis
, M.
, Buckley
, C. W.
, and Bergman
, T. L.
, 1999
, “An Engineering Model for Laser-Induced Sintering of Polymer Powders
,” ASME J. Manuf. Sci. Eng.
, 121
, pp. 360
–365
.9.
Kandis
, M.
, and Bergman
, T. L.
, 2000
, “A Simulation-Based Correlation of the Effective Thermal Conductivity and Porosity of Objects Produced by Laser-Induced Sintering of Polymer Powders
,” ASME J. Manuf. Sci. Eng.
, 122
, pp. 439
–444
.10.
Bunnell, D. E., 1995, Fundamentals of Selective Laser Sintering of Metals, Ph.D. thesis of the University of Texas at Austin.
11.
Zhang
, Y.
, Faghri
, A.
, Buckley
, C. W.
, and Bergman
, T. L.
, 2000
, “Three-Dimensional Sintering of Two Component Metal Powders with Stationary and Moving Laser Beams
,” ASME J. Heat Transfer
122
, pp. 150
–158
.12.
Haag
, M.
, Hugel
, H.
, Algright
, C. E.
, and Ramasamy
, S.
, 1996
, “CO2 Laser Light Absorption Characteristics of Metal Powders
,” J. Appl. Phys.
, 79
, pp. 3835
–3841
.13.
Touloukian, Y. S., and Ho, C. Y., 1972, Thermophysical Properties of Matter, 7, Thermal Radiative Properties of Metallic Solids, Plenum Press, New York.
14.
Incropera, F. P., and DeWitt, D. P., 1996, Fundamentals of Heat and Mass Transfer, John Wiley & Sons, New York.
15.
Touloukian, Y. S., and Ho, C. Y., 1972, Thermophysical Properties of Matter, 2, Thermal Conductivity of Metallic Solids, Plenum Press, New York.
16.
Iida, T., and Guthrie, R. I. L., 1988, The Physical Properties of Liquid Metals, Oxford University Press, New York.
17.
Avallone, E. A., and Baumeister, T., 1999, Mark’s Handbook for Mechanical Engineers, McGraw-Hill, New York.
18.
Nicrobraz® technical data sheet (Wall Colmonoy Corp.)
19.
Duley, W. W., 1983, Laser Processing and Analysis of Materials, Plenum Press, New York.
20.
Kaviany, M., 1991, Principles of Heat Transfer in Porous Media, Springer-Verlag, New York.
21.
Bala
, K.
, Pradhan
, P. R.
, Saxena
, N. S.
, and Saksena
, M. P.
, 1989
, “Effective Thermal Conductivity of Copper Powders
,” J. Phys. D
, 22
, pp. 1068
–1072
.22.
German
, R. M.
, 1990
, “Supersolidus Liquid Phase Sintering Part II: Densification Theory
,” Int. J. Powder Metall.
, 25
, pp. 35
–42
.23.
Cline
, H. E.
, and Anthony
, T. R.
, 1977
, “Heat Treating and Melting Material with a Scanning Laser or Electron Beam
,” J. Appl. Phys.
, 48
, pp. 3895
–3900
.24.
Lax
, M.
, 1977
, “Temperature Rise Induced by a Laser Beam
,” J. Appl. Phys.
, 48
, pp. 3919
–3924
.25.
Nissim
, Y. I.
, Lietoila
, A.
, Gold
, R. B.
, and Gibbons
, J. F.
, 1980
, “Temperature Distributions Produced in Semiconductors by a Scanning Elliptical or Circular CW Laser Beam
,” J. Appl. Phys.
, 51
, pp. 577
–583
.26.
Kline
, S. J.
, and McClintock
, F. A.
, 1953
, “Describing Uncertainties in Single-Sample Experiments
,” Mech. Eng. (Am. Soc. Mech. Eng.)
, 75
pp. 3
–8
.27.
Modest
, M. F.
, and Abakians
, H.
, 1986
, “Heat Conduction in a Moving Semi-Infinite Plane Subjected to a Moving Gaussian Heat Source
,” ASME J. Heat Transfer
, 108
, pp. 597
–601
.28.
Anthony
, T. R.
, and Cline
, H. E.
, 1997
, “Surface Rippling Induced by Surface-Tension Gradients During Laser Surface Melting and Alloying
,” J. Appl. Phys.
, 48
, pp. 3888, 3894
3888, 3894
.29.
Wei
, P. S.
, Chang
, C. Y.
, and Chen
, C. T.
, 1996
, “Surface Ripple in Electron-Beam Welding Solidification
,” ASME J. Heat Transfer
, 118
, pp. 960
–969
.Copyright © 2001
by ASME
You do not currently have access to this content.