The assumption of local thermal equilibrium (LTE) is very common in the study of reacting flows in porous media. The assumption simplifies the structure of the solutions and places fewer constraints on computational methods for the domain and boundary conditions. However, in certain systems, such as gas/solid metal hydride reactors, the boundary conditions may impose high energy transfer rates which produce slowly evolving phase change fronts coupled with rapid kinetics. Overall performance of the systems is proportional to the release or absorption of hydrogen, and this is sensitively related to temperature. Thus, capturing local departures from LTE is required. This paper directly evaluates the influence of these effects by solving an NLTE (non-local thermal equilibrium) formulation for coupled reactors as a function of the interphase heat transfer coefficient, hsf. The reactor dynamics and overall energy balances are compared to solutions previously obtained from LTE calculations. The results appear to be the first NLTE results for coupled reactors. They confirm the existence of NLTE effects and suggest the magnitude of hsf for which they can be minimized.

1.
Dantzer
,
P.
,
1997
, “
Metal-Hydride Technology: A Critical Review,” in Hydrogen in Metals III. Properties and Applications, H. Wipf, ed.
,
Top. Appl. Phys.
,
73
, Springer-Verlag, New York, pp.
279
340
.
2.
Kim
,
K. J.
,
Feldman
,
K. T.
,
Lloyd
,
G.
,
Razani
,
A.
, and
Shanahan
,
K. L.
,
1998
, “
Performance of High Power Metal Hydride Reactors
,”
Int. J. Hydrogen Energy
,
23
(
5
), pp.
355
362
.
3.
Lloyd
,
G.
,
Kim
,
K. J.
,
Razani
,
A.
, and
Feldman
,
K. T.
, Jr.,
1998
, “
Thermal Conductivity Measurements of Metal Hydride Compacts Developed for High Power Reactors
,”
J. Thermophys. Heat Transfer
,
12
(
1
), pp.
132
137
.
4.
Lloyd
,
G.
,
Razani
,
A.
, and
Feldman
,
K. T.
, Jr.,
1998
, “
Transitional Reactor Dynamics Affecting Optimization of a Heat-Driven Metal Hydride Refrigerator
,”
Int. J. Heat Mass Transf.
,
41
(
3
), pp.
513
427
.
5.
Lloyd
,
G.
,
Razani
,
A.
, and
Kim
,
K. J.
,
1998
, “
Performance Characteristics of a Compressor-Driven Metal Hydride Refrigerator
,”
J. Energy Resour. Technol.
,
120
(
4
), pp.
305
313
.
6.
Kuznetsov
,
A. V.
,
1997
, “
Optimal Control of the Heat Storage in a Porous Slab
,”
Int. J. Heat Mass Transf.
,
40
(
7
), pp.
1720
1723
.
7.
Kuznetsov
,
A. V.
,
1996
, “
Investigation of a Non-Thermal Equilibrium Flow of an Incompressible Fluid in a Cylindrical Tube Filled with Porous Media
,”
Zeitschrift fu¨r Angewandte Mathematik und Mechanik
,
76
(
6
), pp.
411
418
.
8.
Vu Dang
,
C.
, and
Delcambre
,
B.
,
1987
, “
Etude Expe´rimentale et Mode´lisation d’un Stockage Thermique de Longue Dure´e en Lit de Cailloux Enterre´, Couple´ a` des Capteurs Solaires a` Air
,”
Rev. Phys. Appl.
,
22
, pp.
487
503
.
9.
Jemni
,
A.
, and
Nasrallah
,
S. B.
,
1995
, “
Study of Two-Dimensional Heat and Mass Transfer During Desorption in a Metal-Hydrogen Reactor
,”
Int. J. Hydrogen Energy
,
20
(
11
), pp.
881
891
.
10.
Mhimid
,
A.
,
1998
, “
Theoretical Study of Heat and Mass Transfer in a Zeolite Bed During Water Desorption: Validity of Local Thermodynamic Equilibrium Assumption
,”
Int. J. Heat Mass Transf.
,
41
, pp.
2967
2977
.
11.
Kuznetsov
,
A. V.
, and
Vafai
,
K.
,
1995
, “
Analytical Comparison and Criteria for Heat and Mass Transfer Models in Metal Hydride Packed Beds
,”
Int. J. Heat Mass Transf.
,
38
(
15
), pp.
2873
2884
.
12.
Lloyd, G. M., 1998, “Optimization of Heat and Mass Transfer in Metal Hydride Systems.” Ph.D. thesis, University of New Mexico, Albuquerque, NM.
13.
Kaviany, M., 1995, Principles of Heat Transfer in Porous Media, 2nd ed., Springer-Verlag, New York.
14.
Fukuda
,
K.
,
Tetsuya
,
K.
, and
Haseqawa
,
S.
,
1992
, “
Similarity Rule Between Heat Transfer and Pressure Drop of Porous Material
,”
AIChE J.
,
38
(
11
), pp.
1840
1842
.
15.
Lloyd, G., Razani, A., and Feldman, K. T., 1995, “Fundamental Issues Involved in a Theoretical Description of the Heat and Hydrogen Transfer Occurring in Coupled Porous Metal Hydride Reactors,” Proceedings of the ASME Int. Mech. Eng. Cong. & Exp., San Francisco, HTD-Vol. 321/FED-Vol. 233, pp. 671–681.
16.
Reid
,
C. R.
, and
Oakberg
,
R. G.
,
1990
, “
A Continuum Theory for the Mechanical Response of Materials to the Thermodynamic Stress of Sintering
,”
Mech. Mater.
,
10
, pp.
203
213
.
17.
White, F. M., 1991, Viscous Fluid Flow, 2nd ed., McGraw-Hill Inc., p. 50.
18.
Strikwerda, J. C., 1989, Finite Difference Schemes and Partial Differential Equations, Chapman & Hall, Ltd., London.
19.
Lloyd, G. M., 1994, “Transient Heat/Mass Transfer Modeling of Metal Hydride Cycles,” M.S. thesis, University of New Mexico, Albuquerque, NM.
20.
Ames, W. F., 1992, Numerical Methods for Partial Differential Equations, 3rd ed., Academic Press Inc., San Diego, CA, p. 73.
21.
Nobles, M. A., 1974, Using the Computer to Solve Petroleum Engineering Problems, Gulf Publishing Company, Houston, CA, p. 405.
22.
Ramshaw
,
J. D.
, and
Chang
,
C. H.
,
1992
, “
Computational Fluid Dynamics Modeling of Multicomponent Thermal Plasmas
,”
Plasma Chem. Plasma Process.
,
12
(
3
), pp.
299
325
.
23.
Roache, P. J., 1993, “A Method for Uniform Reporting of Grid Refinement Studies,” Quantification of Uncertainty in Computational Fluid Dynamics, I. Celik, ed., American Society of Mechanical Engineers, Fluids Engineering Division, FED-158, pp. 109–120.
You do not currently have access to this content.