A time-dependent integral formulation is developed for modeling transient radiative transfer. The development is based on a rigorous analysis of the wave propagation process inside the participating media. The physical significance of the present integral formulation is the consideration of the time-dependent domain of computation, which is different from the domain disturbed by radiation (i.e., the wave front envelope). Numerical computations are performed for the medium that is an absorbing and isotropically scattering one-dimensional plane slab geometry. The spatial and temporal incident radiation and radiative flux distributions are presented for different boundary conditions and for uniform and nonuniform property distribution. The transient results at large time step are compared with steady-state solutions by the finite volume and quadrature methods and show excellent agreement. The solutions of reflecting boundary condition exhibit distinctive behavior from that of the non-reflecting boundary.

1.
Mitra
,
K.
, and
Kumar
,
S.
,
1999
, “
Development and Comparison of Models for Light-Pulse Transport through Scattering-Absorbing Media
,”
Appl. Opt.
,
38
, No.
1
, pp.
188
196
.
2.
Crosbie
,
A. L.
, and
Dougherty
,
R. L.
,
1982
, “
Two-Dimensional Linearly Anisotropic Scattering in a Semi-Infinite Cylindrical Medium Exposed to a Laser Beam
,”
J. Quant. Spectrosc. Radiat. Transf.
,
28
, No.
3
, pp.
233
263
.
3.
Menguc
,
M. P.
, and
Viskanta
,
R.
,
1987
, “
Radiation Heat Transfer in Combustion Systems
,”
Prog. Energy Combust. Sci.
,
13
, pp.
97
160
.
4.
Weinman
,
J. A.
, and
Shipley
,
S. T.
,
1972
, “
Effects of Multiple Scattering on Laser Pulses Transmitted Through Clouds
,”
J. Geophys. Res.
,
77
, pp.
7123
7128
.
5.
Yamada, Y., 1995, “Light-Tissue Interaction and Optical Imaging in Biomedicine,” Annual Review of Fluid Mechanics and Heat Transfer, C. L. Tien, ed., 6, Begell House, New York, pp. 1–59.
6.
Majumdar, A., 1998, “Microscale Energy Transport in Solids,” Microscale Energy Transport, C. L. Tien et al., eds., Begell House, New York, pp. 1–93.
7.
Longtin
,
J. P.
, and
Tien
,
C. L.
,
1996
, “
Saturable Absorption during High-Intensity Laser Heating of Liquids
,”
ASME J. Heat Transfer
118
, pp.
924
930
.
8.
Qiu
,
T. Q.
, and
Tien
,
C. L.
,
1992
, “
Short Pulse Laser Heating in Metals
,”
Int. J. Heat Mass Transf.
,
35
, pp.
719
726
.
9.
Liu
,
F.
,
Yoo
,
K. M.
, and
Alfano
,
R. R.
,
1993
, “
Ultrafast Laser-Pulse Transmission and Imaging through Biological Tissues
,”
Appl. Opt.
,
32
, No.
4
, pp.
554
558
.
10.
Gemert
,
M. J. C.
, and
Welch
,
A. J.
,
1989
, “
Clinical Use of Laser-Tissue Interaction
,”
IEEE Eng. Med. Biol. Mag.
,
1989
, pp.
10
13
.
11.
Grant
,
K. J.
,
Piper
,
J. A.
,
Ramsay
,
D. J.
, and
Williams
,
K. L.
,
1993
, “
Pulse Lasers in Particle Detection and Sizing
,”
Appl. Opt.
,
32
, No.
4
, pp.
416
417
.
12.
Mitra, K., and Kumar, S., 1997, “Application of Transient Radiative Transfer Equation to Oceanographic Lidar,” ASME HTD-Vol. 353, pp. 359–365.
13.
Balsara
,
D. W.
,
1999
, “
An Analysis of the Hyperbolic Nature of the Equations of Radiation Hydrodynamics
,”
J. Quant. Spectrosc. Radiat. Transf.
,
61
, No.
5
, pp.
617
627
.
14.
Mitra
,
K.
,
Lai
,
M.-S.
, and
Kumar
,
S.
,
1997
, “
Transient Radiation Transport in Participating Media With a Rectangular Enclosure
,”
AIAA J. Thermophysics and Heat Transfer
,
11
, No.
3
, pp.
409
414
.
15.
Wu
,
C.-Y.
,
1989
, “
Hyperbolic Heat Conduction with Surface Radiation and Reflection
,”
Int. J. Heat Mass Transf.
,
32
, No.
8
, pp.
1585
1587
.
16.
Frankel
,
J. I.
,
1991
, “
A Nonlinear Heat Transfer Problem. Solution of Nonlinear, Weakly Singular Volterra Partial Integral Equations of the Second Kind
,”
Eng. Anal. Boundary Elem.
,
8
, No.
5
, pp.
231
238
.
17.
Cotta
,
R. M.
,
1994
, “
Benchmark Results in Computational Heat and Fluid Flow: the Integral Transform Method
,”
Int. J. Heat Mass Transf.
,
37
, Suppl. 1, pp.
381
393
.
18.
Ramankutty
,
M. A.
, and
Crosbie
,
A. L.
,
1998
, “
Modified Discrete-Ordinates Solution of Radiative Transfer in Three-Dimensional Rectangular Enclosures
,”
J. Quant. Spectrosc. Radiat. Transf.
,
60
, No.
1
, pp.
103
134
.
19.
Ramankutty
,
M. A.
, and
Crosbie
,
A. L.
,
1997
, “
Modified Discrete-Ordinates Solution of Radiative Transfer in Two-Dimensional Rectangular Enclosures
,”
J. Quant. Spectrosc. Radiat. Transf.
,
57
, No.
1
, pp.
107
140
.
20.
Roe
,
P. L.
,
1986
, “
Characteristic-Based Schemes for the Euler Equation
,”
Annu. Rev. Fluid Mech.
,
18
, pp.
337
365
.
21.
Harten
,
A.
,
1983
, “
High Resolution Schemes for Hyperbolic Conservation Laws
,”
J. Comput. Phys.
,
49
, pp.
357
393
.
22.
Shu
,
C.-W.
,
1988
, “
Efficient Implementation of Essentially Non-oscillatory Shock-Capturing Schemes
,”
J. Comput. Phys.
,
77
, pp.
439
471
.
23.
Tannehill, J. C., Anderson, D. A., and Pletcher, R. H., 1997, Computational Fluid Mechanics and Heat Transfer, 2nd ed., Taylor & Francis, Washington, DC.
24.
Tan
,
Z.
,
1989
, “
Radiative Heat Transfer in Multidimensional Emitting, Absorbing, and Anisotropic Scattering Media—Mathematical Formulation and Numerical Method
,”
ASME J. Heat Transfer
,
111
, pp.
141
146
.
25.
Tan
,
Z.
, and
Howell
,
J. R.
,
1990
, “
A New Numerical Method for Radiation Heat Transfer in Nonhomogeneous Participating Media
,”
AIAA J. Thermophysics and Heat Transfer
,
4
, No.
4
, pp.
419
424
.
26.
Hsu
,
P.-F.
,
Tan
,
Z.
, and
Howell
,
J. R.
,
1993
, “
Radiative Transfer by the YIX Method in a Nonhomogeneous, Scattering and Non-Gray Medium
,”
AIAA J. Thermophysics and Heat Transfer
,
7
, No.
3
, pp.
487
495
.
27.
Huan
,
J.
, and
Naraghi
,
M. H. N.
,
1991
, “
Source Function Approach for Radiative Heat Transfer Analysis
,”
AIAA J. Thermophysics and Heat Transfer
,
6
, No.
3
, pp.
568
571
.
28.
Wu, S.-H., Wu, C.-Y., and Hsu, P.-F., 1996, “Solutions of Radiative Transfer in Inhomogeneous Participating Media Using the Quadrature Method,” presented at the ASME 1996 Int. Mechanical Engineering Congress & Exposition, Atlanta, GA, November 1996, ASME HTD-Vol. 332, pp. 101–108.
29.
Penzkofer
,
A.
,
1988
, “
Passive W-Switching and Mode-Locking for the Generation of Nanosecond to Femtosecond Pulses
,”
Applied Physics B
,
46
, pp.
43
60
.
30.
Wu, C.-Y., 1999, private communication.
31.
Pomraning, G. C., 1973, The Equations of Radiation Hydrodynamics, Pergamon Press, New York.
32.
Ozisik, M. N., 1973, Radiative Transfer and Interaction with Conduction and Convection, Wiley, New York.
33.
Modest, M. F. 1993, Radiative Heat Transfer, McGraw-Hill, New York.
34.
Siegel, R., and Howell, J. R., 1992, Thermal Radiative Heat Transfer, 3rd ed., Taylor & Francis, Washington, DC.
35.
Panton, R. L., 1996, Incompressible Flow, 2nd ed., Wiley, New York.
36.
Linz, P., 1985, Analytical and Numerical Methods for Volterra Equation, SIAM.
37.
Wu
,
C.-Y.
,
1990
, “
Exact Integral Formulation for Radiative Transfer in an Inhomogeneous Scattering Medium
,”
AIAA J. Thermophysics and Heat Transfer
,
4
(
4
), pp.
425
431
.
38.
Hsu, P.-F., 2000, “Effects of Multiple Scattering and Reflective Boundary on the Transient Radiative Transfer Process,” the 2000 National Heat Transfer Conf., paper NHTC2000-12078, Pittsburgh, PA.
You do not currently have access to this content.