The effect of a time-sinusoidal magnetic field on the onset of convection in a horizontal magnetic fluid layer heated from above and bounded by isothermal non magnetic boundaries is investigated. The analysis is restricted to static and linear laws of magnetization. A first order Galerkin method is performed to reduce the governing linear system to the Mathieu equation with damping term. Therefore, the Floquet theory is used to determine the convective threshold for the free-free and rigid-rigid cases. With an appropriate choice of the ratio of the magnetic and gravitational forces, we show the possibility to produce a competition between the harmonic and subharmonic modes at the onset of convection.
Issue Section:
Natural and Mixed Convection
1.
Berkovsky, B. M., 1978, Thermomechanics of Magnetic Fluids: Theory and Applications, Berkovsky Edition, Hemisphere, New York.
2.
Bashtovoy, V. G., Berkovsky, B. M., and Vislovich, A. N., 1988, Introduction to Thermomechanics of Magnetic Fluids, Berkovsky Edition, Hemisphere, New York.
3.
Finlayson
, B. A.
, 1970
, “Convective Instability of Ferromagnetic Fluids
,” J. Fluid Mech.
, 40
, Part 4, pp. 753
–767
.4.
Shwab
, L.
, Hildebrandt
, U.
, and Stierstadt
, K.
, 1983
, “Magnetic Be´nard Convection
,” J. Magn. Magn. Mater.
, 39
, p. 113
113
.5.
Stiles
, P. J.
, and Kagan
, M.
, 1990
, “Thermoconvective Instability of a Horizontal Layer of Ferrofluid in a Strong Vertical Magnetic Field
,” J. Magn. Magn. Mater.
, 85
, pp. 196
–198
.6.
Rudraiah
, N.
, and Sekhar
, G. N.
, 1991
, “Convection on Magnetic Fluids With Internal Heat Generation
,” ASME J. Heat Transfer
, 113
, pp. 122
–127
.7.
Bashtovoy, V. G., and Berkovsky, B. M., 1973, “Thermomechanics of Ferromagnetic Fluids,” Magnitnaya Gidrodynamica, No. 3, pp. 3–14.
8.
Zaitsev
, V. M.
, and Shliomis
, M. I.
, 1968
, “The Hydrodynamics of a Ferromagnetic Fluid
,” J. Appl. Mech. Tech. Phys.
, 9
, No. 1
, pp. 24
–26
.9.
Polevikov
, V. K.
, and Fertman
, V. E.
, 1977
, “Investigation of Heat Transfer Through a Horizontal Layer of a Magnetic Liquid for the Cooling of Cylindrical Conductors With a Current
,” Magnetohydrodynamics (N.Y.)
, 13
, pp. 11
–16
.10.
Zebib
, A.
, 1996
, “Thermal Convection in Magnetic Fluid
,” J. Fluid Mech.
, 321
, pp. 121
–136
.11.
Berkovsky
, B. M.
, Fertman
, V. E.
, Polevikov
, V. K.
, and Isaev
, S. V.
, 1976
, “Heat Transfer Across Vertical Ferrofluid Layers
,” Int. J. Heat Mass Transf.
, 19
, pp. 981
–986
.12.
Aniss
, S.
, Souhar
, M.
, and Brancher
, J. P.
, 1993
, “Thermal Convection In a Magnetic Fluid In an Annular Hele-Shaw Cell
,” J. Magn. Magn. Mater.
, 122
, pp. 319
–322
.13.
Souhar
, M.
, Aniss
, S.
, and Brancher
, J. P.
, 1999
, “Convection de Rayleigh-Be´nard Dans les Liquides Magne´tiques en Cellule de Hele-Shaw Annulaire
,” Int. J. Heat Mass Transf.
, 42
, pp. 61
–72
.14.
Gresho
, P. M.
, and Sani
, R. L.
, 1970
, “The Effects of Gravity Modulation On The Stability of a Heated Fluid Layer
,” J. Fluid Mech.
, 40
, pp. 783
–806
.15.
Biringen
, S.
, and Peltier
, L. J.
, 1990
, “Numerical Simulation of 3-D Be´nard Convection With Gravitational Modulation
,” Phys. Fluids
, A2
, No. 5
, pp. 754
–764
.16.
Clever
, R.
, Schubert
, G.
, and Busse
, F. H.
, 1993
, “Two-dimensional Oscillatory Convection In a Gravitationally Modulated Fluid Layer
,” J. Fluid Mech.
, 253
, pp. 663
–680
.17.
Gershuni, G. Z., and Zhukhovitskii, E. M., 1976, Convective Instability of Incompressible Fluid, Keter Publisher, Jerusalem.
18.
Shliomis, M., Brancher J. P., and Souhar, M., 1995, “Parametric Excitation in Magnetic Fluids Under a Time Periodic Magnetic Field,” Proceeding of the Seventh conference on Magnetic Fluids, Bhavnagar, India.
19.
Aniss
, S.
, Souhar
, M.
, and Belhaq
, M.
, 2000
, “Asymptotic Study of the Convective Parametric Instability in Hele-Shaw Cell
,” Phys. Fluids
, 12
, (No. 2
), pp. 262
–268
.20.
Brancher, J. P., 1980, Sur l’Hydrodynamique des Ferrofluides, The`se D’e´tat de l’INPL, Nancy.
21.
Rosenweig, R. E., 1985, Ferrohydrodynamics, Cambridge University Press.
22.
Morse, P. M., and Feshbach, H., 1953, Methods of Theoretical Physics, Part I, Mc Graw-Hill, New York, pp. 556–563.
23.
Jordan, D. W., and Smith, P., 1987, Non Linear Ordinary Differential Equations, Oxford Clarendon Press, New York.
24.
Chandrasekhar S., 1961, Hydrodynamic and Hydromagnetic Stability, Oxford University Press, London.
Copyright © 2001
by ASME
You do not currently have access to this content.