Computations were performed to study the three-dimensional flow and heat transfer in a U-shaped duct of square cross section under rotating and non-rotating conditions. The parameters investigated were two rotation numbers (0, 0.24) and smooth versus ribbed walls at a Reynolds number of 25,000, a density ratio of 0.13, and an inlet Mach number of 0.05. Results are presented for streamlines, velocity vector fields, and contours of Mach number, pressure, temperature, and Nusselt numbers. These results show how fluid flow in a U-duct evolves from a unidirectional one to one with convoluted secondary flows because of Coriolis force, centrifugal buoyancy, staggered inclined ribs, and a 180 deg bend. These results also show how the nature of the fluid flow affects surface heat transfer. The computations are based on the ensemble-averaged conservation equations of mass, momentum (compressible Navier-Stokes), and energy closed by the low Reynolds number SST turbulence model. Solutions were generated by a cell-centered finite-volume method that uses second-order flux-difference splitting and a diagonalized alternating-direction implicit scheme with local time stepping and V-cycle multigrid.

*Turbulence Modeling for CFD*, DCW Industries, La Canada, CA.