Parameters in the heat conduction equation are frequently modeled as temperature dependent. Thermal conductivity, volumetric heat capacity, convection coefficients, emissivity, and volumetric source terms are parameters that may depend on temperature. Many applications, such as parameter estimation, optimal experimental design, optimization, and uncertainty analysis, require sensitivity to the parameters describing temperature-dependent properties. A general procedure to compute the sensitivity of the temperature field to model parameters for nonlinear heat conduction is studied. Parameters are modeled as arbitrary functions of temperature. Sensitivity equations are implemented in an unstructured grid, element-based numerical solver. The objectives of this study are to describe the methodology to derive sensitivity equations for the temperature-dependent parameters and present demonstration calculations. In addition to a verification problem, the design of an experiment to estimate temperature variable thermal properties is discussed.

1.
Dowding
,
K. J.
,
Beck
,
J. V.
, and
Blackwell
,
B. F.
,
1999
, “
Estimating Temperature-Dependent Thermal Properties of Carbon-Carbon Composite
,”
J. Thermophys. Heat Transfer
,
13
, No.
3
, pp.
328
336
.
2.
Dowding
,
K. J.
,
Blackwell
,
B. F.
, and
Cochran
,
R. J.
,
1999
, “
Application of Sensitivity Coefficients for Heat Conduction Problems
,”
Numer. Heat Transfer, Part B
,
36
, No.
1
, pp.
33
55
.
3.
Beck, J. V., and Arnold, K., 1977, Parameter Estimation in Engineering and Science Wiley, New York.
4.
Taktak
,
R.
,
Beck
,
J. V.
, and
Scott
,
E.
,
1993
, “
Optimal Experimental Design for Estimating Thermal Properties of Composite Materials
,”
Int. J. Heat Mass Transf.
,
36
, No.
12
, p.
2977
2977
.
5.
Taktak, R., 1992, “Design and Validation of Optimal Experiments for Estimating Thermal Properties of Composite Materials,” Ph.D thesis, Michigan State University, East Lansing, MI.
6.
Emery
,
A. F.
, and
Fadale
,
T. D.
,
1996
, “
Design of Experiments Using Uncertainty Information
,”
ASME J. Heat Transfer
,
118
, pp.
532
538
.
7.
Fadale
,
T. D.
,
Nenarokomov
,
A. V.
, and
Emery
,
A. F.
,
1995
, “
Two Approaches to Optimal Sensor Locations
,”
ASME J. Heat Transfer
,
117
, pp.
373
379
.
8.
Coleman
,
H. W.
, and
Stern
,
F.
,
1997
, “
Uncertainties and CFD Code Validation
,”
J. Fluids Eng.
,
119
, pp.
795
803
.
9.
Coleman
,
H. W.
, and
Steele
,
W. G.
,
1995
, “
Engineering Applications of Experimental Uncertainty Analysis
,”
AIAA J.
,
33
, No.
10
, pp.
1888
1896
.
10.
Fadale
,
T. D.
, and
Emery
,
A. F.
,
1994
, “
Transient Effects of Uncertainties on the Sensitivities of Temperatures and Heat Fluxes Using Stochastic Finite Elements
,”
ASME J. Heat Transfer
,
116
, pp.
808
814
.
11.
Liu
,
W. K.
,
Besterfield
,
G.
, and
Belytschko
,
T.
,
1988
, “
Transient Probabilistic Systems
,”
Comput. Methods Appl. Mech. Eng.
,
67
, pp.
27
54
.
12.
Liu
,
W. K.
,
Belytschko
,
T.
, and
Mani
,
A.
,
1986
, “
Probabilistic Finite Elements for Nonlinear Structural Dynamics
,”
Comput. Methods Appl. Mech. Eng.
,
56
, pp.
61
81
.
13.
Emery
,
A. F.
, and
Fadale
,
T. D.
,
1997
, “
Handling Temperature Dependent Properties and Boundary Conditions in Stochastic Finite Element Analysis
,”
Numer. Heat Transfer, Part A
,
31
, pp.
37
51
.
14.
Nicolai
,
B. M.
, and
De Baerdemaeker
,
J.
,
1997
, “
Finite Element Perturbation Analysis of Non-Linear Heat Conduction Problems with Random Field Parameters
,”
Int. J. Numer. Methods Heat Fluid Flow
,
7
, No.
5
, pp.
525
544
.
15.
Nicolai
,
B. M.
, and
De Baerdemaeker
,
J.
,
1993
, “
Computation of Heat Conduction in Materials with Random Variable Thermophysical Properties
,”
Int. J. Numer. Methods Eng.
,
36
, pp.
523
536
.
16.
Blackwell
,
B. F.
,
Dowding
,
K. J.
, and
Cochran
,
R. J.
,
1999
, “
Development and Implementation of Sensitivity Coefficient Equations For Heat Conduction Problems
,”
Numer. Heat Transfer, Part B
,
36
, No.
1
, pp.
15
32
.
17.
Blackwell, B. F., and Dowding, K. J., 1999, “Sensitivity Analysis and Uncertainty Propagation in a General Purpose Thermal Analysis Code,” Proceedings of the 3rd ASME/JSME Joint Fluids Engineering Conference, July 18–23, 1999, San Francisco, CA.
18.
Blackwell
,
B. F.
,
Cochran
,
R. J.
, and
Dowding
,
K. J.
,
1998
, “
Development and Implementation of Sensitivity Coefficient Equations for Heat Conduction Problems,” ASME Proceedings of the 7th AIAA/ASME Joint Thermophysics and Heat Transfer Conference
,
ASME-HTD-Vol.
357-2
, pp.
303
316
.
19.
Beck. J. V., and Osman, A. M, 1991, “Sequential Estimation of Temperature-Dependent Thermal Properties,” High Temperature-High Pressure 23, pp. 255–266.
20.
Jin, G., Venkatesan, G., Chyu, M.-C., and Zheng, J.-X., 1998, “
Measurement of Thermal Conductivity and Heat Capacity of Foam Insulation During Transient Heating,” AV-7569, Final Report, Department of Mechanical Engineering, Texas Tech. University, May 20, 1998.
21.
Dowding
,
K.
,
Beck
,
J.
,
Ulbrich
,
A.
,
Blackwell
,
B.
, and
Hayes
,
J.
,
1995
, “
Estimation of Thermal Properties and Surface Heat Flux in a Carbon-Carbon Composite Material
,”
J. Thermophys. Heat Transfer
,
9
, No.
2
, pp.
345
351
.
22.
Incropera, F. P., and Dewitt, D. P., 1990, Introduction to Heat Transfer, 2nd Edition, Wiley, New York.
You do not currently have access to this content.