This paper is concerned with an inverse problem for the conduction of heat in a two-dimensional domain. It seeks to recover the subsurface conductivity profile based on the measurements obtained at the boundary. The method considers a temporal interval for which time-dependent measurements are provided. It formulates an optimal estimation problem which seeks to minimize the error difference between the given data and the response from the system. It uses a combination of the zeroth-order and the first-order Tikhonov regularization to stabilize the inversion. The method leads to an iterative algorithm which, at every iteration, requires the solution to a two-point boundary value problem. A number of numerical results are presented which indicate that a close estimate of the thermal conductivity function can be obtained based on the boundary measurements only. [S0022-1481(00)00902-6]

1.
Beck, J. V., Blackwell, B., and St. Clair, C. R., 1985, Inverse Heat Conduction: Ill-Posed Problems, Wiley-Interscience, New York.
2.
Tikhonov, A. N., and Arsenin, V., 1977, Solutions of Ill-Posed Problems, Wiley, New York.
3.
Alifanov, O. M., Mayinger, E., Bergles, A. E., and Grigull, U., 1994, Inverse Heat Transfer Problems, Springer-Verlag, New York.
4.
Klibanov
,
M. V.
, and
Lucas
,
T. R.
,
1999
, “
Numerical Solutions of a Parabolic Inverse Problem in Optical Tomography Using Experimental Data
,”
SIAM (Soc. Ind. Appl. Math.) J. Appl. Math.
,
59
, pp.
1763
1789
.
5.
Berntsson
,
F.
,
1999
, “
A Spectral Method for Solving the Sideways Heat Equation
,”
Inverse Probl.
,
15
, pp.
891
906
.
6.
Martiz
,
M. F.
,
Herman
,
G. T.
, and
Yee
,
C.
,
1998
, “
Recovery of the Absorption Coefficient From Diffused Reflected Light Using a Discrete Diffusive Model
,”
SIAM (Soc. Ind. Appl. Math.) J. Appl. Math.
,
59
, pp.
58
71
.
7.
Stoffa
,
P. L.
, and
Sen
,
M. K.
,
1991
, “
Nonlinear Multiparameter Optimization Using Genetic Algorithms: Inversion of Plane-Wave Seismograms
,”
Geophysics
,
56
, pp.
1794
1810
.
8.
Keys
,
R.
,
1986
, “
An Application of Marquardt’s Procedure to the Seismic Inversion Problem
,”
IEEE Proc.
,
74
, p.
476
476
.
9.
Pade
,
O.
, and
Mandelis
,
A.
,
1993
, “
Computational Thermal-Wave Slice Tomography With Back-Propagation and Transmission Reconstructions
,”
Rev. Sci. Instrum.
,
64
, pp.
3548
3562
.
10.
Pade
,
O.
, and
Mandelis
,
A.
,
1994
, “
Thermal-Wave Slice Tomography Using Wave-Field Reconstruction
,”
Inverse Probl.
,
10
, pp.
185
197
.
11.
Chew
,
W.
, and
Wang
,
Y.
,
1990
, “
Reconstruction of Two-Dimensional Permittivity Distribution Using the Distorted Born Iterative Method
,”
IEEE Trans. Med. Imaging
,
9
, No.
2
, pp.
218
225
.
12.
Knowles
,
I.
,
1999
, “
Uniqueness for an Elliptic Inverse Problem
,”
SIAM (Soc. Ind. Appl. Math.) J. Appl. Math.
,
59
, pp.
1356
1370
.
13.
Isakov
,
V.
,
1999
, “
Some Inverse Problems for the Diffusion Equation
,”
Inverse Probl.
,
15
, pp.
3
10
.
14.
Gatti
,
S.
,
1998
, “
An Existance Result for an Inverse Problem for a Quisilinear Parabolic Equation
,”
Inverse Probl.
,
14
, pp.
53
65
.
15.
Anderson, B. D. O., and Moore, J. B., 1990, Optimal Control, Linear Quadratic Methods, Prentice-Hall, Englewood Cliffs, NJ.
16.
Patankar, S. P., 1980, Numerical Heat Transfer and Fluid Flow, Taylor & Francis, New York.
17.
Axelsson, O., 1996, Iterative Solution Methods, Cambridge Univ. Press, New York.
18.
Tadi
,
M.
,
1997
, “
Inverse Heat Conduction Based on Boundary Measurements
,”
Inverse Probl.
,
13
, pp.
1585
1605
.
You do not currently have access to this content.