Immediately after nucleation in a superheated gas mixture, the very small size of liquid droplets affects the condensation growth of the droplets in two ways: (1) The droplet size may be comparable to the mean free path of the gas molecules, resulting in noncontinuum transport effects, and (2) surface tension effects may strongly alter the conditions at the interface of the droplet. In the study reported here, a direct simulation Monte Carlo scheme was used to model the molecular transport during quasi-equilibrium condensation growth of water microdroplets in a supersaturated mixture of water vapor and a noncondensable gas. In the simulation, the boundary condition at the droplet surface is treated in a manner that allows us to model surface tension effects on transport. Results of calculations are presented for water vapor and argon mixtures for which some experimental data on droplet growth rates exists. The simulation results indicate that surface tension effects play a significant role in the determination of droplet growth rates during early stages of droplet growth. In particular, the results indicate that the droplet growth rate, droplet temperature, and the temperature slip at the interface pass through maxima as the droplet grows. These trends are a consequence of the shift in equilibrium vapor pressure due to surface tension effects at small droplet radii. [S0022-1481(00)02702-X]

1.
Kang
,
S.-W.
,
1967
, “
Analysis of Condensation Droplet Growth in Rarefied and Continuum Environments
,”
AIAA J.
,
5
, pp.
1288
1295
.
2.
Sampson
,
R. E.
, and
Springer
,
G. S.
,
1969
, “
Condensation on and Evaporation From Droplets by the Moment Method
,”
J. Fluid Mech.
,
36
, pp.
577
584
.
3.
Shankar
,
P. N.
,
1970
, “
A Kinetic Theory of Steady Condensation
,”
J. Fluid Mech.
,
40
, pp.
385
400
.
4.
Gajewski
,
P.
,
Kulicki
,
A.
,
Wisniewski
,
A.
, and
Zgorzelski
,
M.
,
1974
, “
Kinetic Theory Approach to the Vapor Phase Phenomena in Non-equilibrium Condensation Process
,”
Phys. Fluids
,
17
, pp.
321
327
.
5.
Lou
,
Y. S.
,
1978
, “
On the Nonlinear Droplet Condensation and Evaporation Problem
,”
J. Appl. Phys.
,
49
, pp.
2350
2356
.
6.
Loyalka
,
S. K.
,
1982
, “
Condensation on a Spherical Droplet, II
,”
J. Colloid Interface Sci.
,
87
, pp.
216
224
.
7.
Lang
,
H.
,
1983
, “
Heat and Mass Exchange of a Droplet in a Polyatomic Gas
,”
Phys. Fluids
,
26
, pp.
2109
2114
.
8.
Chernyak
,
V. G.
, and
Margilevskiy
,
A. Y.
,
1989
, “
The Kinetic Theory of Heat and Mass Transfer From a Spherical Particle in a Rarefied Gas
,”
Int. J. Heat Mass Transf.
,
32
, pp.
2127
2134
.
9.
Young
,
J. B.
,
1991
, “
The Condensation and Evaporation of Liquid Droplets in a Pure Vapor at Arbitrary Knudsen Number
,”
Int. J. Heat Mass Transf.
,
34
, pp.
1649
1661
.
10.
Young
,
J. B.
,
1993
, “
The Condensation and Evaporation of Liquid Droplets at Arbitrary Knudsen Number in the Presence of an Inert Gas
,”
Int. J. Heat Mass Transf.
,
36
, pp.
2941
2956
.
11.
Peters
,
F.
, and
Paikert
,
B.
,
1994
, “
Measurement and Interpretation of Growth and Evaporation of Monodispersed Droplets in a Shock Tube
,”
Int. J. Heat Mass Transf.
,
37
, pp.
293
302
.
12.
Peters
,
F.
, and
Meyer
,
K. A. J.
,
1995
, “
Measurement and Interpretation of Growth and Evaporation of Monodispersed Water Droplets Suspended in Pure Vapor
,”
Int. J. Heat Mass Transf.
,
38
, pp.
3285
3293
.
13.
Widder
,
M. E.
, and
Titulaer
,
U. M.
,
1993
, “
Kinetic Boundary Layers in Gas Mixtures: Systems Described by Nonlinearly Coupled Kinetic and Hydrodynamic Equations and Applications to Droplet Condensation and Evaporation
,”
J. Stat. Phys.
,
70
, pp.
1255
1279
.
14.
El-Afify
,
M. M.
, and
Corradini
,
M. L.
,
1989
, “
Transient Condensation of Vapor Using a Direct Simulation Monte Carlo Method
,”
Fusion Technol.
,
15
, pp.
783
790
.
15.
El-Afify
,
M. M.
, and
Corradini
,
M. L.
,
1990
, “
Condensation of Vapor in the Presence of a Noncondensable Gas at Low Pressures
,”
Nucl. Eng. Des.
,
121
, pp.
103
111
.
16.
Carey
,
V. P.
,
Oyumi
,
S. M.
, and
Ahmed
,
S.
,
1997
, “
Post Nucleation Growth of Water Microdroplets in Supersaturated Gas Mixtures: A Molecular Simulation Study
,”
Int. J. Heat Mass Transf.
,
40
, pp.
2393
2406
.
17.
Bird, G. A., 1994, Molecular Gas Dynamics and the Direct Simulation of Gas Flows, Oxford University Press, Oxford, UK.
18.
McDonald, J. D. 1989, “A Computationally Efficient Particle Simulation Method Suited to Vector Computer Architectures,” Report SUDAAR 589, Department of Aeronautics and Astronautics, Stanford University, Stanford, CA.
19.
Baganoff
,
D.
, and
McDonald
,
J. D.
,
1990
, “
A Collision-Selection Rule for a Particle Simulation Method Suited to Vector Computers
,”
Phys. Fluids A
,
2
, pp.
1248
1259
.
20.
Langmuir
,
I.
,
1915
, “
The Dissociation of Hydrogen Into Atoms, Part II
,”
J. Am. Chem. Soc.
,
37
, pp.
417
458
.
21.
Paul
,
B.
,
1962
, “
Compilation of Evaporation Coefficients
,”
ARS J.
,
32
, pp.
1321
1328
.
22.
Yasuoka, K., Matsumoto, M., and Kataoka, Y., 1995, “Molecular Simulation of Evaporation and Condensation I. Self Condensation and Molecular Exchange,” Proc. ASME/JSME Thermal Engineering Joint Conf., Vol. 2, ASME, New York, pp. 459–464.
23.
Carey, V. P., 1992, Liquid-Vapor Phase Change Phenomena, Taylor and Francis, New York.
24.
Mason
,
E. A.
, and
Saxena
,
S. C.
,
1958
, “
Approximate Formula for the Thermal Conductivity of Gas Mixtures
,”
Phys. Fluids
,
1
, pp.
361
369
.
25.
Wilke
,
C. R.
, and
Lee
,
C. Y.
,
1955
, “
Estimation of Diffusion Coefficients for Gases and Vapors
,”
Ind. Eng. Chem.
,
47
, pp.
1253
1257
.
26.
Mills, A. F. 1965, “The Condensation of Steam at Low Pressures,” Technical Report NSF GP-2520, Series No. 6, Issue No. 39, Space Sciences Laboratory, University of California, Berkeley, CA.
27.
Mills, A. F. 1995, Heat and Mass Transfer, Richard D. Irwin, Chicago, IL, Chapters 9–10.
28.
Borgnakke
,
C.
, and
Larsen
,
P. S.
,
1975
, “
Statistical Collision Model for Monte Carlo Simulation of a Polyatomic Gas Mixture
,”
J. Comput. Phys.
,
18
, pp.
405
420
.
You do not currently have access to this content.