A method is presented for estimating the condensation heat transfer coefficient in a horizontal, spirally grooved microfin tube. Based on the flow observation study performed by the authors, a laminar film condensation model in the annular flow regime is proposed. The model assumes that all the condensate flow occurs through the grooves. The condensate film is segmented into thin and thick film regions. In the thin film region formed on the fin surface, the condensate is assumed to be drained by the combined surface tension and vapor shear forces. In the thick film region formed in the groove, on the other hand, the condensate is assumed to be driven by the vapor shear force. The present and previous local heat transfer data including four fluids (CFC11, HCFC22, HCFC123, and HFC134a) and three microfin tubes are found to agree with the present predictions to a mean absolute deviation of 15.1 percent. [S0022-1481(00)01501-2]

1.
Khanpara, J. C., Bergles, A. E., and Pate, M. B., 1986, “Augmentation of R-113 In-tube Condensation With Micro-fin Tubes,” in Heat Transfer in Air Conditioning and Refrigeration Equipment, J. A. Kohler and J. W. B. Lu, eds., ASME, NY, pp. 21–32.
2.
Schlager
,
L. M.
,
Pate
,
M. B.
, and
Bergles
,
A. E.
,
1989
, “
Heat Transfer and Pressure Drop During Evaporation and Condensation of R22 in Horizontal Micro-fin Tubes
,”
Int. J. Refrig.
,
12
, pp.
6
14
.
3.
Schlager
,
L. M.
,
Pate
,
M. B.
, and
Bergles
,
A. E.
,
1990
, “
Evaporation and Condensation Heat Transfer and Pressure Drop in Horizontal, 12.7-mm Microfin Tubes with Refrigerant 22
,”
J. Heat Transfer
,
112
, pp.
1041
1041
.
4.
Schlager, L. M., Pate, M. B., and Bergles, A. E., 1990, “Condensation of Refrigerant-Oil Mixture in Smooth and Augmented Tubes,” Proceedings of the 2nd International Symposium on Condensers and Condensation, Mar. 28–30, University of Bath, Bath, UK, pp. 451–460.
5.
Hori
,
M.
, and
Shinohara
,
Y.
,
1990
, “
Heat Transfer Characteristics of Internally Grooved Tubes
,”
Shindo-Gizyutsu Kenkyuukai-shi
,
29
, pp.
65
70
.
6.
Koyama
,
S.
,
Miyara
,
A.
,
Takamatsu
,
H.
, and
Fujii
,
T.
,
1990
, “
Condensation Heat Transfer of Binary Refrigerant Mixtures of R22 and R114 Inside a Horizontal Tube with Internal Spiral Grooves
,”
Int. J. Refrig.
,
13
, pp.
256
263
.
7.
Haraguchi, H., 1994, “Study on Condensation of HCFC22, HFC134a and HCFC123 Inside Horizontal Tubes,” Dr. Eng. thesis, Kyushu University.
8.
Chamra
,
L. M.
, and
Webb
,
R. L.
,
1996
, “
Advanced Micro-Fin Tubes for Condensation
,”
Int. J. Heat Mass Transf.
,
39
, pp.
1839
1846
.
9.
Webb, R. L., 1994, Principles of Enhanced Heat Transfer, John Wiley and Sons, New York.
10.
Fujii
,
T.
,
1995
, “
Enhancement to Condensing Heat Transfer–New Developments
,”
J. Enhanced Heat Transfer
,
2
, pp.
127
137
.
11.
Sirnivasan, V., and Shah, R. K., 1997, “Condensation in Extended Surfaces and Small Hydraulic Diameter Channels,” Compact Heat Exchangers for the Process Industries, R. K. Shah, et al., eds., Begell House, New York, pp. 101–118.
12.
Shikazono
,
N.
,
Itoh
,
M.
,
Uchida
,
M.
,
Fukushima
,
T.
, and
Hatada
,
T.
,
1997
, “
Prediction Method for Condensation Heat Transfer Coefficient of Pure Refrigerants in Horizontal Microfin Tubes
,”
Trans. Jpn. Soc. Mech. Eng., Ser. B
,
63
, pp.
2436
2443
.
13.
Shikazono
,
N.
,
Itoh
,
M.
,
Uchida
,
M.
,
Fukushima
,
T.
, and
Hatada
,
T.
,
1998
, “
Predictive Equation Proposal for Condensation Heat Transfer Coefficient of Pure Refrigerants in Horizontal Microfin Tubes
,”
Trans. Jpn. Soc. Mech. Eng., Ser. B
,
64
, pp.
196
203
.
14.
Dobson
,
M. K.
, and
Chato
,
J. C.
,
1998
, “
Condensation in Smooth Horizontal Tubes
,”
J. Heat Transfer
,
120
, pp.
193
213
.
15.
Nozu
,
S.
,
Katayama
,
H.
,
Nakata
,
H.
, and
Honda
,
H.
,
1998
, “
Condensation of a Refrigerant CFC11 in Horizontal Microfin Tubes (Proposal of a Correlation Equation for Frictional Pressure Gradient)
,”
Exp. Therm. Fluid Sci.
,
18
, pp.
82
96
.
16.
Honda
,
H.
, and
Nozu
,
S.
,
1987
, “
A Prediction Method for Heat Transfer During Film Condensation on Horizontal Low Integral-Fin Tubes
,”
J. Heat Transfer
,
109
, pp.
218
225
.
17.
Wallis, G. B., 1969, One-Dimensional Two-Phase Flow, McGraw-Hill, New York.
You do not currently have access to this content.