A laser-induced Rayleigh light scattering (RLS) system was used to measure transient gas temperatures in a simulated rapid chemical vapor deposition (RCVD) reactor. The test section geometry was an axisymmetric jet of carrier gas directed down, impinging on a heated wafer surface. RLS was used to measure instantaneous gas temperature at several locations above the wafer as it was heated from room temperature to 475 K. Gas flow rate and wafer temperature correspond to jet Reynolds number Rei=60, wafer maximum Grashof number GrH=4.4×106, and maximum mixed convection parameter GrH/Rei2=1200; all conditions typical of impinging jet reactors common in the numerical literature. Uncertainty of RLS transient temperature from a propagated error analysis was ±2–4 K. Peak gas temperature fluctuations were large (in the order of 25 to 75 °C). Both flow visualization and RLS measurements showed that the flow field was momentum dominated prior to heating initiation, but became unstable by GrH/Rei2=5. It then consisted of buoyancy-induced plumes and recirculations. Up to the peak wafer temperature, the flow field continued to be highly three-dimensional, unsteady, and dominated by buoyancy. RLS measurements are shown to provide information on carrier gas instantaneous temperature and flow field stability, both critical issues in RCVD processing. [S0022-1481(00)02401-4]

1.
Hebb, J. P., and Jensen, K. F., 1995, “Length Scales and Pattern Effects in RTP Heat Transfer,” RTP ’95, R. B. Fair and B. Lojek, eds., RTP ’95, Round Rock, TX, pp. 198–204.
2.
Fair, R. B., 1993, Rapid Thermal Processing, Academic Press, San Diego, CA.
3.
Evans
,
G.
, and
Greif
,
R.
,
1987
, “
A Numerical Model of the Flow and Heat Transfer in a Rotating Disk Chemical Vapor Deposition Reactor
,”
ASME J. Heat Transfer
,
109
, pp.
928
935
.
4.
Evans
,
G.
, and
Greif
,
R.
,
1989
, “
A Study of Traveling Wave Instabilities in a Horizontal Channel Flow with Applications to Chemical Vapor Deposition
,”
Int. J. Heat Mass Transf.
,
32
, pp.
895
911
.
5.
Evans
,
G.
, and
Greif
,
R.
,
1993
, “
Thermally Unstable Convection with Applications to Chemical Vapor Deposition Channel Reactors
,”
Int. J. Heat Mass Transf.
,
36
, pp.
2769
2781
.
6.
Evans
,
G.
, and
Greif
,
R.
,
1994
, “
A Two-Dimensional Model of the Chemical Vapor Deposition of Silicon Nitride in a Low-Pressure Hot-Wall Reactor Including Multicomponent Diffusion
,”
Int. J. Heat Mass Transf.
,
37
, pp.
1535
1543
.
7.
Evans, G. and Greif, R., 1995, “Transport in Chemical Vapor Deposition Reactors: A Two-Dimensional Model Including Multicomponent and Thermal Diffusion, and Species Interdiffusion,” Proceedings of the ASME-JSME Thermal Engineering Joint Conference, Vol. 4, ASME, New York, pp. 95–101.
8.
Lin
,
Y. T.
,
Choi
,
M.
, and
Greif
,
R.
,
1992
, “
A Three-Dimensional Analysis of Particle Deposition for the Modified Chemical Vapor Deposition (MCVD) Process
,”
ASME J. Heat Transfer
,
114
, pp.
735
742
.
9.
Patnaik, S., 1989, “Modeling of Transport Processes in Chemical Vapor Deposition Reactors,” Ph.D. thesis, Massachusetts Institute of Technology, Cambridge, MA.
10.
Wang
,
C. A.
,
Groves
,
S. H.
,
Palmateer
,
S. C.
,
Weyburne
,
D. W.
, and
Brown
,
R. A.
,
1986
, “
Flow Visualization Studies for Optimization of OMVPE Reactor Design
,”
J. Cryst. Growth
,
77
, pp.
136
143
.
11.
Wang
,
C. A.
,
Patniak
,
S.
,
Caunt
,
J. W.
, and
Brown
,
R. A.
,
1988
, “
Growth Characteristics of a Vertical Rotating-Disk OMVPE Reactor
,”
J. Cryst. Growth
,
93
, pp.
228
234
.
12.
Patnaik
,
S.
,
Brown
,
R. A.
, and
Wang
,
C. A.
,
1989
, “
Hydrodynamic Dispersion in Rotating-Disk OMVPE Reactors: Numerical Simulation and Experimental Measurements
,”
J. Cryst. Growth
,
96
, pp.
153
174
.
13.
Moffat
,
H. K.
, and
Jensen
,
K. F.
,
1988
, “
Three-Dimensional Flow Effects in Silicon CVD in Horizontal Reactors
,”
J. Electrochem. Soc.
,
135
, pp.
459
471
.
14.
Jensen
,
K. F.
,
1989
, “
Transport Phenomena and Chemical Reaction Issues in OMVPE of Compound Semiconductors
,”
J. Cryst. Growth
,
98
, pp.
148
166
.
15.
Fotiadis
,
D. I.
,
Boekhold
,
M.
,
Jensen
,
K. F.
, and
Richter
,
W.
,
1990
, “
Flow and Heat Transfer in CVD Reactors: Comparison of Raman Temperature Measurements and Finite Element Model Predictions
,”
J. Cryst. Growth
,
100
, pp.
577
589
.
16.
Fotiadis
,
D. I.
,
Kieda
,
S.
, and
Jensen
,
K. F.
,
1990
, “
Transport Phenomena in Vertical Reactors for Metalorganic Vapor Phase Epitaxy
,”
J. Cryst. Growth
,
102
, pp.
441
470
.
17.
Jensen
,
K. F.
,
Einset
,
E. O.
, and
Fotiadis
,
D. I.
,
1991
, “
Flow Phenomena in Chemical Vapor Deposition of Thin Films
,”
Annu. Rev. Fluid Mech.
,
23
, pp.
197
232
.
18.
Jensen
,
K. F.
,
Fotiadis
,
D. I.
, and
Mountziaris
,
T. J.
,
1991
, “
Detailed Models of the MOVPE Process
,”
J. Cryst. Growth
,
107
, pp.
1
11
.
19.
Lie
,
K.-N.
,
Merchant
,
T. P.
, and
Jensen
,
K. F.
,
1993
, “
Simulation of Rapid Thermal Processing Equipment and Processes
,” Materials Research Society Symposium Proceedings, Vol.
303
,
MRS
,
Pittsburgh
, pp.
197
209
.
20.
Kerker, M., 1969, The Scattering of Light, Academic Press, New York.
21.
Bohren, C. F., and Huffman, D. R., 1983, Absorption and Scattering of Light by Small Particles, Wiley, New York.
22.
Pitts
,
W. M.
, and
Kashiwagi
,
T.
,
1984
, “
The Application of Laser-Induced Rayleigh Light Scattering to the Study of Turbulent Mixing
,”
J. Fluid Mech.
,
141
, pp.
391
429
.
23.
Richards
,
C. D.
, and
Pitts
,
W. M.
,
1993
, “
Global Density Effects on the Self-Preservation Behavior of Turbulent Free Jets
,”
J. Fluid Mech.
,
254
, pp.
417
435
.
24.
Dibble, R. W., Hollenbach, R. E., and Rambach, G. D., 1980, “Temperature Measurement in Turbulent Flames via Rayleigh Scattering,” Laser Probes for Combustion Chemistry, D. R. Crosley ed., American Chemical Society, pp. 435–441.
25.
Horton
,
J. F.
, and
Peterson
,
J. E.
,
1999
, “
Transient Temperature Measurements in an Ideal Gas by Laser-Induced Rayleigh Light Scattering
,”
Rev. Sci. Instrum.
,
70
, No.
8
, pp.
3222
3226
.
26.
Horton, J. F., IV, 1998, “Transient Gas Temperature Measurements in a Rapid Thermal Chemical Vapor Deposition Reactor Using Rayleigh Light Scattering,” M.S. thesis, Department of Mechanical Engineering, University of Florida.
27.
Pitz
,
R. W.
,
Cattolica
,
R.
,
Bobben
,
F.
, and
Talbot
,
F.
,
1976
, “
Temperature and Density in a Hydrogen-Air Flame From Rayleigh Scattering
,”
Combust. Flame
,
27
, pp.
313
320
.
28.
Moffat
,
R. J.
,
1985
, “
Using Uncertainty Analysis in the Planning of an Experiment
,”
J. Fluids Eng.
,
107
, pp.
173
178
.
29.
Karki
,
K. C.
,
Sathyamurthy
,
P. S.
, and
Patankar
,
S. V.
,
1993
, “
Three-Dimensional Mixed Convection in a Horizontal Chemical Vapor Deposition Reactor
,”
ASME J. Heat Transfer
,
115
, pp.
803
806
.
30.
Karki, K. C., Sathyamurthy, P. S., and Patankar, S. V., 1993, “Laminar Flow Over a Confined Heated Disk: Effect of Buoyancy and Rotation,” Advanced Computations in Materials Processing, ASME, New York, pp. 73–81.
You do not currently have access to this content.