1.
Bare
W. H.
,
Mullholland
R. J.
, and
Sofer
S. S.
,
1990
, “
Design of a Self-Tuning Rule Based Controller for a Gasoline Refinery Catalytic Reformer
,”
IEEE Trans Automat. Control
, Vol.
35
, No.
2
, pp.
156
164
.
2.
Blackwell, B. F., and Armaly, B. F., 1993, “Benchmark Problem Definition and Summary of Computational Results for Mixed Convection Over a Backward Facing Step,” HTD-Vol. 258, ASME, New York, pp. 1–10.
3.
Brandt
A.
,
1997
, “
Multi-Level Adaptive Solutions to Boundary-Value Problem
,”
Math. Comput.
, Vol.
31
, No.
138
, pp.
333
390
.
4.
Cort, G. E., Graham, A. L., and Johnson, N. L., 1982, “Comparison of Methods for Solving Nonlinear Finite-Element Equations in Heat Transfer,” ASME Paper No. 82-HT-40.
5.
Elder
J. W.
,
1965
, “
Laminar Free Convection in a Vertical Slot
,”
Journal of Fluid Mechanics
, Vol.
23
, pp.
77
98
.
6.
Iida
S.
,
Ogawara
K.
,
Furusawa
S.
, and
Ohata
N.
,
1994
, “
A Fast Converging Method Using Wobbling Adaptive Control of SOR Relaxation Factor for 2D Benard Convection
,”
J. of Mechanical Engineering Society of Japan
, Vol.
7
, pp.
168
174
.
7.
Patankar, S. V., 1980, Numerical Heat Transfer and Fluid Flow, McGraw-Hill, New York.
8.
Ryoo, J., Kaminski, D., and Dragojlovic, Z., 1998, “Automatic Convergence in a Computational Fluid Dynamics Algorithm Using Fuzzy Logic,” The Sixth Annual Conference of the Computational Fluid Dynamics Society of Canada, VIII.
9.
Saad
Y.
, and
Schultz
M. R.
,
1986
, “
GMRES: A Generalized Minimum Residual Algorithm for Solving Nonsymmetric Linear Systems
,”
SIAM J. Sci. Stat. Comp.
, Vol.
7
, No.
3
, pp.
856
869
.
10.
Schreiber
R.
, and
Keller
H. B.
,
1983
, “
Driven Cavity Flows by Efficient Numerical Techniques
,”
J. of Computational Physics
, Vol.
49
, pp.
310
333
.
11.
Zade
L.
,
1965
, “
Fuzzy Sets
,”
Information and Control
, Vol.
8
, pp.
338
358
.
This content is only available via PDF.

Article PDF first page preview

Article PDF first page preview
You do not currently have access to this content.