Issue Section:
Technical Briefs
1.
Bare
W. H.
Mullholland
R. J.
Sofer
S. S.
1990
, “Design of a Self-Tuning Rule Based Controller for a Gasoline Refinery Catalytic Reformer
,” IEEE Trans Automat. Control
, Vol. 35
, No. 2
, pp. 156
–164
.2.
Blackwell, B. F., and Armaly, B. F., 1993, “Benchmark Problem Definition and Summary of Computational Results for Mixed Convection Over a Backward Facing Step,” HTD-Vol. 258, ASME, New York, pp. 1–10.
3.
Brandt
A.
1997
, “Multi-Level Adaptive Solutions to Boundary-Value Problem
,” Math. Comput.
, Vol. 31
, No. 138
, pp. 333
–390
.4.
Cort, G. E., Graham, A. L., and Johnson, N. L., 1982, “Comparison of Methods for Solving Nonlinear Finite-Element Equations in Heat Transfer,” ASME Paper No. 82-HT-40.
5.
Elder
J. W.
1965
, “Laminar Free Convection in a Vertical Slot
,” Journal of Fluid Mechanics
, Vol. 23
, pp. 77
–98
.6.
Iida
S.
Ogawara
K.
Furusawa
S.
Ohata
N.
1994
, “A Fast Converging Method Using Wobbling Adaptive Control of SOR Relaxation Factor for 2D Benard Convection
,” J. of Mechanical Engineering Society of Japan
, Vol. 7
, pp. 168
–174
.7.
Patankar, S. V., 1980, Numerical Heat Transfer and Fluid Flow, McGraw-Hill, New York.
8.
Ryoo, J., Kaminski, D., and Dragojlovic, Z., 1998, “Automatic Convergence in a Computational Fluid Dynamics Algorithm Using Fuzzy Logic,” The Sixth Annual Conference of the Computational Fluid Dynamics Society of Canada, VIII.
9.
Saad
Y.
Schultz
M. R.
1986
, “GMRES: A Generalized Minimum Residual Algorithm for Solving Nonsymmetric Linear Systems
,” SIAM J. Sci. Stat. Comp.
, Vol. 7
, No. 3
, pp. 856
–869
.10.
Schreiber
R.
Keller
H. B.
1983
, “Driven Cavity Flows by Efficient Numerical Techniques
,” J. of Computational Physics
, Vol. 49
, pp. 310
–333
.11.
Zade
L.
1965
, “Fuzzy Sets
,” Information and Control
, Vol. 8
, pp. 338
–358
.
This content is only available via PDF.
Copyright © 1999
by The American Society of Mechanical Engineers
You do not currently have access to this content.