The flow and heat transfer characteristics of impinging laminar jets issuing from rectangular slots of different aspect ratios have been investigated numerically through the solution of three-dimensional Navier-Stokes and energy equations in steady state. The three-dimensional simulation reveals the existence of pronounced streamwise velocity off-center peaks near the impingement plate. Furthermore, the effect of these off-center velocity peaks on the Nusselt number distribution is also investigated. Interesting three-dimensional flow structures are detected which cannot be predicted by two-dimensional simulations.

1.
Al-Sanea
S.
,
1992
, “
A Numerical Study of the Flow and Heat Transfer Characteristics of an Impinging Laminar Slot-jet Including Crossflow Effects
,”
Int. J. Heat Mass Transfer
, Vol.
35
, pp.
2501
2513
.
2.
Chou
Y. J.
, and
Hung
Y. H.
,
1994
, “
Impingement Cooling of an Isothermally Heated Surface with a Confined Slot Jet
,”
ASME JOURNAL OF HEAT TRANSFER
, Vol.
116
, pp.
479
482
.
3.
Gardon
R.
, and
Akfirat
J. C.
,
1966
, “
Heat Transfer Characteristics of Impinging Two-Dimensional Air Jets
,”
ASME JOURNAL OF HEAT TRANSFER
, Vol.
88
, pp.
101
108
.
4.
Garg
V. K.
, and
Jayaraj
S.
,
1988
, “
Boundary Layer Analysis for Two-Dimensional Slot Jet Impingement on Inclined Plates
,”
ASME JOURNAL OF HEAT TRANSFER
, Vol.
110
, pp.
577
582
.
5.
Gosman, D., Pun, W. M., Runchal, A. K., Spalding, D. B., and Wolfshtein, M., 1969, Heat and Mass Transfer in Recirculating flows, Academic Press, London.
6.
Heiningen
A. R. P. V.
,
Majumdar
A. S.
, and
Douglas
W. J. M.
,
1976
, “
Numerical Prediction of the Flow Field and Impinging Heat Transfer Caused by a Laminar Slot Jet
,”
ASME JOURNAL OF HEAT TRANSFER
, Vol.
98
, pp.
654
658
.
7.
Hoffmann, K. A., and Chiang, S. T., 1995, Computational Fluid Dynamics for Engineers, Vol. 1, Engineering Education System Publications, Wichita, KS.
8.
Leonard
B. P.
,
1979
, “
A Stable and Accurate Convective Modelling Procedure Based on Quadratic Upstream Interpolation
,”
Comput. Methods Appl. Mech. Engng.
, Vol.
19
, pp.
59
98
.
9.
Leonard
B. P.
, and
Mokhtari
S.
,
1990
, “
Beyond First Order Upwinding: The ULTRA-SHARP Alternative for Nonoscillatory Steady-State Simulation of Convection
,”
Int. J. Numer. Methods Eng.
, Vol.
30
, pp.
729
766
.
10.
Leonard
B. P.
, and
Drummond
J. E.
,
1995
, “
Why You Should Not Use ’Hybrid,’ ’Power Law’ or Related Exponential Schemes for Convective Modelling—There are Much Better Alternatives
,”
Int. J. Numer. Meth. Fluids
, Vol.
20
, pp.
421
442
.
11.
Lin
Z. H.
,
Chou
Y. J.
, and
Hung
Y. H.
,
1997
, “
Heat Transfer Behaviors of a Confined Slot Jet Impingement
,”
Int. J. Heat Mass Transfer
, Vol.
40
, pp.
1095
1107
.
12.
Masters
G. F.
,
1981
, “
Spanwise Velocity Distributions in Jets from Rectangular Slots
,”
AIAA J.
, Vol.
19
, pp.
148
152
.
13.
Mikhail, S., Moreos, S. M., Abou-Ellail, M. M. M., and Ghaly, W. S., 1982, “Numerical Prediction of Flow Field and Heat Transfer from a Row of Laminar Slot Jets Impinging on a Flat Plate,” Proc. 7th Int. Heat Transfer Conf., Vol. 3, pp. 377–382.
14.
Miyazaki
H.
, and
Silberman
E.
,
1972
, “
Flow and Heat Transfer on a Flat Plate Normal to a Two-dimensional Laminar Jet Issuing from a Nozzle of Finite Height
,”
Int. J. Heat Mass Transfer
, Vol.
15
, pp.
2097
2107
.
15.
Patankar, S. V., 1980, Numerical Heat Transfer and Fluid Flow, Hemisphere, New York.
16.
Potthast
F.
,
Laschefski
H.
, and
Mitra
N. K.
,
1994
, “
Numerical Investigation of Flow Structure and Mixed Convection Heat Transfer of Impinging Radial and Axial Jets
,”
Numer. Heat Transfer
, Part A, Vol.
26
, pp.
123
140
.
17.
Quinn
W. R.
,
1991
, “
Passive Near-Field Mixing Enhancement in Rectangular Jet Flows
,”
AIAA J.
, Vol.
29
, pp.
515
519
.
18.
Quinn
W. R.
, and
Millitzer
J.
,
1988
, “
Experimental and Numerical Study of a Turbulent Free Square Jet
,”
Physics of Fluids
, Vol.
31
, pp.
1017
1025
.
19.
Rockwell
D. O.
,
1977
, “
Vortex Stretching Due to Shear Layer Instability
,”
J. Fluids Eng.
, Vol.
99
, pp.
240
244
.
20.
Saad, Y., 1996, Iterative Methods for Sparse Linear Systems, PSW Publ. Co., Boston.
21.
Schafer
D. M.
,
Incropera
F. P.
, and
Ramadhyani
S.
,
1992
, “
Numerical Simulation of Laminar Convection Heat Transfer from an In-line Array of Disscrete Sources to a Confined Rectangular Jet
,”
Numer. Heat Transfer, Part A
, Vol.
22
, pp.
121
141
.
22.
Sfeir
A.
,
1979
, “
Investigation of Three-Dimensional Turbulent Rectangular Jets
,”
AIAA J.
, Vol.
17
, pp.
1055
1060
.
23.
Tsuchiya
Y.
,
Horikoshi
C.
, and
Sato
T.
,
1986
, “
On the Spread of Rectangular Jets
,”
Exp. Fluids
, Vol.
4
, pp.
1197
204
.
24.
Van der Vorst
H. A. V.
,
1989
, “
BiCGSTAB: A Fast and Smoothly Converging Variant of Bi-CG for the Solution of Non-Symmetric Linear Systems
,”
SIAM J. Sci. Statist. Comput.
, Vol.
10
, pp.
1174
1185
.
25.
Wadsworth
D. C.
, and
Mudawar
I.
,
1990
, “
Cooling of a Multichip Electronic Module by Means of Confined Two-Dimensional Jets of Liquids
,”
ASME JOURNAL OF HEAT TRANSFER
, Vol.
112
, pp.
891
898
.
26.
Yuan
T. D.
,
Liburdy
J. A.
, and
Wang
T.
,
1988
, “
Buoyancy Effects on Laminar Impinging Jets
,”
Int. J. Heat Mass Transfer
, Vol.
31
, pp.
2137
2145
.
This content is only available via PDF.
You do not currently have access to this content.