The phase field method has been demonstrated to hold promise for enabling the physics at the microscale to be incorporated in macroscopic models of solidification. However, for quantitatively accurate simulations to be performed, it will be necessary to develop algorithms which enable the interface width to be made very small. Adaptive grid techniques offer a means of achieving this within practical computational limits. This paper investigates the solution of one-dimensional phase field models using an adaptive grid technique. Three problems are considered: (1) the classical Stefan model, (2) the case of a solid sphere in equilibrium with its melt, and (3) a modified Stefan model with a generalized kinetic undercooling term. The numerical results are compared with those obtained using a fixed grid algorithm. In general, the adaptive grid technique is shown to be far more efficient, but it requires some care in its implementation.

1.
Allen
S. M.
, and
Cahan
J. W.
,
1979
, “
A Microscopic Theory for Antiphase Boundary Motion and its Application to Antiphase Domain Coarsening
,”
Acta. Metall.
, Vol.
27
, pp.
1085
1095
.
2.
Blom
J. G.
, and
Zegeling
P. A.
,
1994
, “
Algorithm 731: A Moving-Grid Interface for Systems of One-Dimensional Time-Dependent Partial Differential Equations
,”
ACM Transactions on Mathematical Software
, Vol.
20
, pp.
194
214
.
3.
Boettinger
W. J.
,
Wheeler
A. A.
,
Murray
B. T.
, and
McFadden
G. B.
,
1994
, “
Prediction Of Solute Trapping At High Solidification Rates Using A Diffuse Interface Phase-Field Theory Of Alloy Solidification
,”
Mat. Sci. Eng. A
, Vol.
178
, pp.
217
223
.
4.
Caginalp
G.
,
1986
, “
An Analysis Of A Phase Field Model Of A Free Boundary
,”
Arch. Rat. Mech. Anal.
, Vol.
92
, pp.
205
245
.
5.
Caginalp
G.
,
1989
, “
Stefan And Hele-Shaw Type Models As Asymptotic Limits Of The Phase Field Equations
,”
Phys. Rev. A
, Vol.
39
, pp.
5887
5896
.
6.
Caginalp
G.
, and
Socolovsky
E. A.
,
1991
, “
Computation Of Sharp Phase Boundaries By Spreading: The Planar And Spherically Symmetric Cases
,”
J. Comp. Phys.
, Vol.
95
, pp.
85
100
.
7.
Caginalp
G.
, and
Xie
W.
,
1993
, “
Phase-Field and Sharp-Interface Alloy Models
,”
Phys. Rev. E
, Vol.
48
, pp.
1897
1909
.
8.
Caginalp
G.
, and
Socolovsky
E. A.
,
1994
, “
Phase Field Computations of Single-Needle Crystals, Crystal Growth, and Motion by Mean Curvature
,”
SIAM J. Sci. Comput.
, Vol.
15
, pp.
106
126
.
9.
Carslaw, H. S., and Jaeger, J. S., 1959, Conduction of Heat in Solids, Clarendon Press, Oxford.
10.
Chalmers, B., 1977, Principles of Solidification, Krieger, New York.
11.
Crank, J., 1984, Free and Moving Boundary Problems, Clarendon Press, Oxford.
12.
Fabbri
M.
, and
Voller
V. R.
,
1995
, “
Numerical Solution of Plane Front Solidification with Kinetic Undercooling
,”
Num. Heat Transfer
, Vol.
27
, pp.
467
486
.
13.
Huang
W.
, and
Russell
R. D.
,
1997
, “
A High Dimensional Moving Mesh Strategy
,”
Appl. Num. Math.
, Vol.
26
, pp.
1
14
.
14.
Huang, W., and Russell, R. D., 1998, “Moving Mesh Strategy Based Upon a Gradient Flow Equation for Two Dimensional Problems,” SIAM J. Sci. Comput., to appear.
15.
Kobayashi
R.
,
1993
, “
Modeling and Numerical Simulations of Dendritic Crystal Growth
,”
Physica D
, Vol.
63
, pp.
410
423
.
16.
Landau, L., and Lifshitz, E., 1959, Statistical Physics, Pergamon, Oxford.
17.
Madsen
N. K.
, and
Sincovec
R. F.
,
1979
, “
Algorithm 540 PDECOL, General Collocation Software for Partial Differential Equations
,”
ACM Transactions on Mathematical Software
, Vol.
5
, pp.
326
351
.
18.
Mullins
W. W.
,
1984
, “
Thermodynamic Equilibrium of a Crystal Sphere in a Fluid
,”
J. Chem. Phys.
, Vol.
81
, pp.
1436
1442
.
19.
Rappaz
M.
,
1989
, “
Modelling of Microstructure Formation in Solidification Processes
,”
International Materials Reviews
, Vol.
34
, pp.
93
123
.
20.
Rappaz
M.
, and
Kurz
W.
,
1995
, “
Dendrites Solidified by Computer
,”
Nature
, Vol.
375
, p.
103
103
.
21.
Swaminathan
C. R.
, and
Voller
V. R.
,
1993
, “
On the Enthalpy Method
,”
Int. J. Num. Meth. Heat Fluid Flow
, Vol.
3
, pp.
233
244
.
22.
Warren
J. A.
, and
Boettinger
W. J.
,
1995
, “
Prediction of Dendritic Growth and Microsegregation Patterns in a Binary Alloy Using the Phase-Field Method
,”
Acta Metall. Mater.
, Vol.
43
, pp.
689
703
.
23.
Wheeler
A. A.
,
Boettinger
W. J.
, and
McFadden
G. B.
,
1992
, “
Phase-Field Model for Isothermal Phase Transitions in Binary Alloys
,”
Phys. Rev. A
, Vol.
45
, pp.
7424
7439
.
24.
Wheeler
A. A.
,
Murray
B. T.
, and
Schaefer
R. J.
,
1993
a, “
Computation of Dendrites Using a Phase Field Model
,”
Physica D
, Vol.
66
, pp.
243
262
.
25.
Wheeler
A. A.
,
Boettinger
W. J.
, and
McFadden
G. B.
,
1993
b, “
Phase-Field Model for Thermal Phase Transitions in Binary Alloys
,”
Phys. Rev. E
, Vol.
47
, pp.
1893
1909
.
26.
Zegeling, P. A., 1992, “Moving-Finite-Element Solution of a 2D Brine Transport Problem in a Porous Medium,” Advances in Computer Methods for Partial Differential Equations-VII, R. Vichnevetsky, D. Knight, and G. Richter, eds., IMACS publication, pp. 845–851.
27.
Zegeling, P. A., 1996, “A Dynamically-Moving Adaptive Grid Method Based on a Smoothed Equidistribution Principle Along Coordinate Lines,” Proceedings of the 5th International Conference on Numerical Grid Generation in Computational Simulations, B. K. Soni, J. F. Thompson, J. Hauser, and P. Eiseman, eds., Mississippi State University, Apr.
This content is only available via PDF.
You do not currently have access to this content.