A shape optimization method for convective cooling channels within a two-dimensional heat conduction region is presented. This method combines genetic algorithms with a point heat sink approach that is used to model the heat removal of the cooling channels during the optimization process. The method can be easily combined with the Finite Element Method (FEM) for the calculation of the optimized temperature field distribution.

1.
Achermann, E., 1995, “Optimierung der Ku¨hlkanalgeometrie mit Hilfe Genetischer Algorithmen,” Diploma Thesis, ETH Zurich, Switzerland.
2.
Barone
M. R.
,
Caulk
D. A.
,
1982
, “
Optimal Arrangement of Holes in a Two-Dimensional Heat Conductor by a Special Boundary Integral Method
,”
Int. J. Num. Meth. Eng.
, Vol.
18
,
675
685
.
3.
Beck, J. V., Cole, K. D., Haji-Sheikh, A., Litkouhi, B., 1992, “Heat Conduction Using Green’s Function,” Series in computational and physical processes in mechanics and thermal sciences, Hemisphere.
4.
Collatz, L., 1981, “Differentialgleichungen,” Teubner, Stuttgart, Germany.
5.
Davis, L., ed., 1991, Handbook of Genetic Algorithms, Van Norstrand Reinhold, New York.
6.
Dulikravich, G. S., Kosovic, B., 1991, “Minimization of the Number of Cooling Holes in Internally Cooled Turbine Blades,” ASME Paper 91-GT-52.
7.
Dulikravich
G. S.
,
Martin
T. J.
,
1994
, “
Inverse Design of Super-Elliptic Cooling Passages in Coated Turbine Blade Airfoils
,”
Jornal of Thermophysics and Heat Transfer
, Vol.
8
, No.
2
,
288
294
.
8.
Goldberg, D. E., 1989, Genetic Algorithms in Search, Optimization, and Machine Learning, Addison-Wesley, New York.
9.
Grefenstette
J. J.
,
1986
, “
Optimization of Control Parameters for Genetic Algorithms
,”
IEEE Trans, on Systems, Man and Cybernetics
, Vol.
16
, No.
1
,
122
128
.
10.
Holland, J. H., 1992, Adaption in Natural and Artifical Systems, The University of Michigan, 1992 ed., MIT Press, Cambridge, MA.
11.
Kamke, E., 1956, Differentialgleichungen reeller Funktionen, 3d ed., Leipzig, Germany.
12.
Kennon
S. R.
,
Dulikravich
G. S.
,
1985
, “
The Inverse Design of Internally Cooled Turbine Blades
,”
ASME Journal of Engineering for Gas Turbines and Power
, Vol.
107
,
123
126
.
13.
Michalewicz, Z., ed., 1992, Genetic Algorithms + Datastructures = Evolution Programs, Springer.
14.
Parang
M.
,
Arimilli
R. V.
,
Ketkar
S. P.
,
1987
, “
Optimal Positioning of Tubes in Arbitrary Two-Dimensional Regions Using a Special Boundary Integral Method
,”
ASME JOURNAL OF HEAT TRANSFER
, Vol.
109
,
826
830
.
15.
Prudnikov, A. P., Brychkov, Y. A., Marichev, O. I., 1988, Integrals and Series, Vol. 1, 2nd ed., Gordon and Breach Science Publishers.
16.
Shau
R.
,
Batista
J.
,
Carey
G. F.
,
1990
, “
An Improved Algorithm for Inverse Design of Thermal Problems With Multiple Materials
,”
ASME JOURNAL OF HEAT TRANSFER
, Vol.
112
,
274
279
.
17.
Queipo
N.
,
Devarakonda
R.
,
Humphrey
J. A. C.
,
1994
, “
Genetic Algorithms for Thermosciences Research: Application to the Optimized Cooling of Electronic Components
,”
Int. J. Heat Mass Transfer
, Vol.
37
, No.
6
,
893
908
.
This content is only available via PDF.
You do not currently have access to this content.