A mathematical model of the evaporating liquid–vapor meniscus in a capillary slot has been developed. The model includes two-dimensional steady-state momentum conservation and energy equations for both the vapor and liquid phases, and incorporates the existing simplified one-dimensional model of the evaporating microfilm. The numerical results, obtained for water, demonstrate the importance of accounting for the fluid flow in calculating the effective evaporative heat transfer coefficient and the superheat of the vapor over the liquid–vapor meniscus due to the heat transfer from the heated wall. With higher heat fluxes, a recirculation zone appears in the vapor near the heated wall due to extensive evaporation in the thin-film region of the liquid–vapor meniscus.

1.
Cao
Y.
, and
Faghri
A.
,
1990
, “
Transient Two-Dimensional I Compressible Analysis for High-Temperature Heat Pipes With Pulsed Heat Input
,”
Numerical Heat Transfer
, Part A, Vol.
18
, pp.
483
502
.
2.
Carey, V. P., 1992, Liquid-Vapor Phase-Change Phenomena: An Introduction to the Thermophysics of Vaporization and Condensation Processes in Heat Transfer Equipment, Hemisphere, New York.
3.
Faghri, A., 1995, Heat Pipe Science and Technology, Taylor & Francis.
4.
Holm
F. W.
, and
Goplen
S. P.
,
1979
, “
Heat Transfer in the Meniscus Thin-Film Transition Region
,”
ASME JOURNAL OF HEAT TRANSFER
, Vol.
10l
, pp.
543
547
.
5.
Kamotani, Y., 1978, “Evaporator Film Coefficients of Grooved Heat Pipes,” Proc. 3rd Int. Heat Pipe Conf., Palo Alto, CA, pp. 128–130.
6.
Khrustalev
D.
, and
Faghri
A.
,
1995
, “
Heat Transfer During Evaporation on Capillary-Grooved Structures of Heat Pipes
,”
ASME JOURNAL OF HEAT TRANSFER
, Vol.
117
, p.
740
747
.
7.
Patankar, S. V., 1980, Numerical Heat Transfer and Fluid Flow, McGraw-Hill, New York.
8.
Potash
M.
, and
Wayner
P. C.
,
1972
, “
Evaporation From a Two-Dimensional Extended Meniscus
,”
Int. J. Heat Mass Transfer
, Vol.
15
, pp.
1851
1863
.
9.
Prakash, C., 1994, “Numerical Heat Transfer and Fluid Flow,” Postgraduate Course, Wright State University, Dayton, OH
10.
Schneider, G. E., Yovanovich, M. M., and Wehrle, V. A., 1976, “Thermal Analysis of Trapezoidal Grooved Heat Pipe Evaporator Walls,” AIAA Paper No. 76-481.
11.
Solov’ev, S. L., and Kovalev, S. A., 1984, “Mechanism of Evaporation of a Liquid From a Porous Surface,” Proc. 5th Int. Heat Pipe Conf., Tsukuba, Japan, Preprints Vol. II, pp. 77–82.
12.
Stephan, P., 1992, Warmedurchgang bei Verdampfung aus Kapillarrillen in Wa¨rmerohren, Fortschr.-Ber. VDI Reihe 19 No. 59, VDI-Vedag, Du¨sseldorf.
13.
Stephan
P. C.
, and
Busse
C. A.
,
1992
, “
Analysis of the Heat Transfer Coefficient of Grooved Heat Pipe Evaporator Walls
,”
Int. J. Heat Mass Transfer
, Vol.
35
, No.
2
, pp.
383
391
.
14.
Swanson
X. X.
, and
Peterson
Y. Y.
,
1994
, “
Evaporating Extended Meniscus in a V-Shaped Channel
,”
J. Thermophysics and Heat Transfer
, Vol.
8
, No.
1
, pp.
172
180
.
15.
Voller
V. R.
,
Brent
A. D.
, and
Prakash
C.
,
1989
, “
The Modeling of Heat, Mass and Solute Transport in Solidification Systems
,”
Int. J. Heat Mass Transfer
, Vol.
32
, No.
9
, pp.
1719
1731
.
16.
Wayner
P. C.
,
Kao
Y. K.
, and
LaCroix
L. V.
,
1976
, “
The Interline Heat Transfer Coefficient of an Evaporating Wetting Film
,”
Int. J. Heat Mass Transfer
, Vol.
19
, pp.
487
492
.
This content is only available via PDF.
You do not currently have access to this content.