This work investigates the effects of vapor shear during pure vapor external condensation on horizontal integral-fin tubes. More than 220 experimental data points in a wide range of operative conditions and enhanced surface geometries are reported together with the visual observation of the condensate flow patterns. The effects of vapor shear are relevant only for vapor Reynolds numbers greater than 70,000–100,000, while heat transfer enhancement is linked to the geometry of the extended surface. A simple semi-empirical equation was developed to account for the shear stress contribution in forced-convection condensation: this equation, applied in conjunction with the model by Briggs and Rose (1994) for stationary vapor condensation, displays a good ability in reproducing all the available data with relevant vapor velocities.

1.
Adamek
T.
, and
Webb
R.
,
1990
, “
Prediction of Film Condensation on a Horizontal Integral-Fin Tube
,”
Int. J. Heat Mass Transfer
, Vol.
33
, pp.
1721
1735
.
2.
Adamek, T., and Webb, R., 1996, Private Communication.
3.
Beatty
K. O.
, and
Katz
D. L.
,
1948
, “
Condensation of Vapor on Outside of Finned Tubes
,”
Chem. Eng. Progr.
, Vol.
44
, pp.
55
70
.
4.
Bella, B., Cavallini, A., Longo, G. A., and Rossetto, L, 1992, “Pure Refrigerant Condensation on a Single integral Finned Tube: Vapour Velocity Effects,” Proc. 1992 Int. Refr. Conf., Purdue University, pp. 177–186.
5.
Bella
B.
,
Cavallini
A.
,
Longo
G. A.
, and
Rossetto
L.
,
1993
, “
Pure Vapour Condensation of Refrigerants 11 and 113 on a Horizontal Integral Finned Tube at High Vapour Velocity
,”
J. of Enhanced Heat Transfer
, Vol.
1
, pp.
77
86
.
6.
Briggs
A.
, and
Rose
J. W.
,
1994
, “
Effect of Fin Efficiency on a Model for Condensation Heat Transfer on a Horizontal Integral-Fin Tube
,”
Int. J. Heat Mass Transfer
, Vol.
37
, pp.
457
463
.
7.
Cavallini, A., Doretti, L., Longo, G. A., and Rossetto, L., 1994a, “Experimental Heat Transfer Coefficients During External Condensation of Halogenated Refrig-erants on Enhanced Tubes,” Proc. 10th lnt. Heat Transfer Conf, Brighton, Vol. 6, pp. 7–12.
8.
Cavallini, A., Doretti, L., Longo, G. A., and Rossetto, L., 1994b, “Flow Patterns During Condensation of Pure Refrigerants on Enhanced Tubes Under High Vapor Velocity,” Proc. Int. Refrig. Conf., Purdue University, p. 311–316.
9.
Cavallini, A., Doretti, L., Longo, G. A., and Rossetto, L., 1994c, “Experimental Investigations on Condensate Flow Patterns on Enhanced Surfaces,” Proc. L L R. Conference “CFC, The Day After,” Padova, Sept. 21–23, pp. 627–634.
10.
Chu
C. M.
, and
McNaught
J. M.
,
1992
, “
Condensation on Bundles of Plain and Low-Finned Tubes—Effects of Vapour Shear and Inundation
,”
I. Chem. E. Symp. Series
, Vol.
1
, No.
129
, pp.
225
232
.
11.
Chu, C. M., and McNaught, J. M., 1994, “Tube Bundle Effects in Crossflow Condensation on Low-Finned Tubes,” Proc. 10th lnt. Heat Transfer Conf., Brighton, Vol. 3, pp. 293–298.
12.
Fujii, T., 1993, “Enhancement to Condensing Heat Transfer. New Developments,” Proc. ICHMT Int. Symp, Lisbon, Portugal, Sept. 6–9.
13.
Honda
H.
,
Uchima
B.
,
Nozu
S.
, and
Fujii
T.
,
1986
, “
Effect of Vapour Velocity on Film Condensation of R-113 on Horizontal Tubes in a Crossflow
,”
Int. J. Heat Mass Transfer
, Vol.
29
, pp.
429
438
.
14.
Honda
H.
,
Uchima
B.
, and
Nozu
S.
,
1987
a, “
A Prediction Method for Heat Transfer During Film Condensation on a Horizontal Low Finned Tube
,”
ASME JOURNAL OF HEAT TRANSFER
, Vol.
109
, p.
218
225
.
15.
Honda, H., Uchima, B., and Nozu, S., 1987b, “A Generalized Prediction Method for Heat Transfer During Film Condensation on a Horizontal Low Finned Tube,” Proc. ASME-JSME Joint Conf., Vol. 4, pp. 385–392.
16.
Honda, H., Uchima, B., Nozu, S., Nakata, H., and Torigoe, E., 1989, “Film Condensation of Downward Flowing R-113 Vapour on In-Line Bundles of Horizontal Finned Tubes,” ASME HTD-Vol. 108, pp. 117–125.
17.
Honda, H., Uchima, B., Nozu, S., Torigoe, E., and Imai, S., 1991, “Film Condensation of Downward Flowing R-1 13 Vapour on Staggered Bundles of Horizontal Finned Tubes,” Proc. ASME/JSME Joint Conf., Vol. 2, pp. 487–494.
18.
Honda, H., Kim, K., and Fukuda, T., 1992, “A Theoretical Model of Film Condensation in a Bundle of Horizontal Finned Tubes Considering the Effect of Vapour Velocity,” Proc. 29th Nat. Heat Transfer Symp. of Japan, pp. 754–755.
19.
Honda, H., 1993, Personal Communications.
20.
Ishihara, K. I., and Palen, J. W., 1983, “Condensation of Pure Fluids on Horizontal Finned Tube Bundles,” Inst. Chem. Eng. Symp., No. 75, Manchester, p. 429–446.
21.
McNaught, J. M., Chu, C. M., 1993, “Heat Transfer Measurements in Condensation on Bundles of Low-Finned Tubes—Effects on Fin Frequency,” Proc. Eng. Found. Conf, St. Augustine, FL, p. 367–376.
22.
Michael, A. C., Marto, P. J., Wanniarachchi, A. S., and Rose, J. W., 1989, “Effect of Vapour Velocity During Condensation on Horizontal Smooth and Finned Tubes,” ASME HTD-Vol. 114, pp. 1–10.
23.
Murata
K.
, and
Hashizume
K.
,
1992
, “
Prediction of Condensation Heat Transfer Coefficient in Horizontal Integral-Fin Tube Bundles
,”
Experimental Heat Transfer
, Vol.
5
, pp.
115
130
.
24.
Rose, J. W., 1993, “Condensation on Low-Finned Tubes—an Equation for Vapor-Side Enhancement,” Proc. Eng. Found. Conf, St. Augustine, FL, pp. 317–334.
This content is only available via PDF.
You do not currently have access to this content.