Heat transfer around nanometer-scale particles plays an important role in a number of contemporary technologies such as nanofabrication and diagnosis. The prevailing method for modeling thermal phenomena involving nanoparticles is based on the Fourier heat conduction theory. This work questions the applicability of the Fourier heat conduction theory to these cases and answers the question by solving the Boltzmann transport equation. The solution approaches the prediction of the Fourier law when the particle radius is much larger than the heat-carrier mean free path of the host medium. In the opposite limit, however, the heat transfer rate from the particle is significantly smaller, and thus the particle temperature rise is much larger than the prediction of the Fourier conduction theory. The differences are attributed to the nonlocal and nonequilibrium nature of the heat transfer processes around nanoparticles. This work also establishes a criterion to determine the applicability of the Fourier heat conduction theory and constructs a simple approximate expression for calculating the effective thermal conductivity of the host medium around a nanoparticle. Possible experimental evidence is discussed.

1.
Anisimov
S. I.
,
Kapeliovich
B. L.
, and
Perel’man
T. L.
,
1974
, “
Electron Emission From Metal Surface Exposed to Ultrashort Laser Pulses
,”
Soviet Physics, JETP
, Vol.
39
, pp.
375
377
.
2.
Ashcroft, N. W., and Mermin, N. D., 1976, Solid State Physics, Saunders, Philadelphia.
3.
Baker
A. S.
, and
Sievers
A. L.
,
1975
, “
Optical Studies of the Vibrational Properties of Disordered Solids
,”
Review of Modern Physics
, Vol.
47
, Suppl. 2, pp.
S1–S180
S1–S180
.
4.
Berman, R., 1976, Thermal Conduction in Solids, Clarendon, Oxford.
5.
Bohren, C., and Huffman, D. R., 1983, Absorption and Scattering of Light by Small Particles, Wiley, New York.
6.
Chen
G.
, and
Tien
C. L.
,
1993
, “
Thermal Conductivity of Quantum Well Structures
,”
AIAA Journal of Thermophysics and Heat Transfer
, Vol.
7
, pp.
311
318
.
7.
Claro
F.
, and
Mahan
G. D.
,
1989
, “
Transient Heat Transport in Solids
,”
Journal of Applied Physics
, Vol.
66
, pp.
4213
4217
.
8.
Flik
M. I.
, and
Tien
C. L.
,
1990
, “
Intrinsic Thermal Stability for Scanning Electron Microscopy of Thin-Film Superconductors
,”
Journal of Applied Physics
, Vol.
67
, pp.
362
370
.
9.
Flores
F.
,
Echenique
P. M.
, and
Ritchie
R. H.
,
1986
, “
Energy Dissipation Processes in Scanning Tunneling Microscopy
,”
Physics Review B
, Vol.
34
, pp.
2899
2902
.
10.
Goodson, K. E., and Flik, M. I., 1992, “Microscale Phonon Transport in Dieleclrics and Intrinsic Semiconductors,” Fundamental Issues in Small Scale Heat Transfer, Y. Bayazitoglu, and G. P. Peterson, ed., ASME HTD-Vol. 227, pp. 29–37.
11.
Goodson
K. E.
,
1996
, “
Thermal Conduction in Nonhomogeneous CVD Diamond Layers in Electronic Microstructures
,”
ASME JOURNAL OF HEAT TRANSFER
, Vol.
118
, pp.
279
286
.
12.
Gryaznov
V. G.
,
Kaprelov
A. M.
, and
Belov
A. Y.
,
1991
, “
Real Temperature of Nanoparticles in Electron Microscope Beams
,”
Philosophical Magazine Letters
, Vol.
63
, pp.
275
279
.
13.
Joshi
A. A.
, and
Majumdar
A.
,
1993
, “
Transient Ballistic and Diffusive Heat Transfer in Thin Films
,”
Journal of Applied Physics
, Vol.
74
, pp.
31
39
.
14.
Klitsner
T.
,
VanCleve
J. E.
,
Fisher
H. E.
, and
Pohl
R. O.
,
1988
, “
Phonon Radiative Heat Transfer and Surface Scattering
,”
Physical Review B.
, Vol.
38
, pp.
7576
7594
.
15.
Li
Y. Z.
,
Vazquez
L.
,
Piner
R.
,
Andres
R. P.
, and
Reifenberger
R.
,
1989
a, “
Writing Nanometer-Scale Symbols in Gold Using the Scanning Tunneling Microscope
,”
Applied Physics Letters
, Vol.
54
, pp.
1424
1426
.
16.
Li
Y. Z.
,
Andres
R. P.
, and
Reifenberger
R.
,
1989
b, “
Reply to: Comment on ’Writing Nanometer-Scale Symbols in Gold Using the Scanning Tunneling Microscope
,”
Applied Physics Letters
, Vol.
55
, pp.
2366
2367
.
17.
Mahan
G. D.
, and
Claro
R.
,
1988
, “
Nonlocal Theory of Thermal Conductivity
,”
Physical Review B
, Vol.
38
, pp.
1963
1969
.
18.
Majumdar
A.
,
1993
, “
Microscale Heat Conduction in Dielectric Thin Films
,”
ASME JOURNAL OF HEAT TRANSFER
, Vol.
115
, pp.
7
16
.
19.
Marella
P. F.
, and
Pease
R. F.
,
1989
, “
Comment on ‘Writing Nanometer-Scale Symbols in Gold Using the Scanning Tunneling Microscope’
,”
Applied Physics Letters
, Vol.
55
, pp.
2366
2367
.
20.
Nakamura
J.
,
Miyamoto
M.
,
Hosaka
S.
, and
Koyanagi
H.
,
1995
, “
High-Density Thermomagnetic Recording Method Using a Scanning Tunneling Microscope
,”
Journal of Applied Physics
, Vol.
77
, pp.
779
781
.
21.
Nonnenmacher
M.
, and
Wickramasinghe
H. K.
,
1992
, “
Scanning Probe Microscopy of Thermal Conductivity and Subsurface Properties
,”
Applied Physics Letters
, Vol.
61
, pp.
168
170
.
22.
Peterson
R. B.
,
1994
, “
Direct Simulation of Phonon-Mediated Heat Transfer in a Debye Crystal
,”
ASME JOURNAL OF HEAT TRANSFER
, Vol.
116
, pp.
815
822
.
23.
Pylkii
R. J.
,
Moyer
P. J.
, and
West
P.
,
1994
, “
Scanning Near-Field Optical Microscopy and Scanning Thermal Microscopy
,”
Japanese Journal of Applied Physics
, Vol.
33
, pp.
3785
3790
.
24.
Qiu
T. Q.
, and
Tien
C. L.
,
1993
, “
Heat Transfer Mechanisms During Short-Pulse Laser Heating of Metals
,”
ASME JOURNAL OF HEAT TRANSFER
, Vol.
115
, pp.
835
841
.
25.
Reggiani, L., 1985, Hot-Electron Transport in Semiconductors, Spring-Verlag, Berlin.
26.
Rhymings
I. L.
,
1965
, “
Radiative Transfer Between Two Concentric Spheres Separated by an Absorbing and Emitting Gas
,”
International Journal of Heat and Mass Transfer
, Vol.
9
, pp.
315
324
.
27.
Rodrigues, P. A. M., Tamulaitis, G., Peter, Y., and Risbud, S. H., 1995, “Anomalously Efficient Laser-Induced Heating of Semiconductor Nanocrystals Embedded in Glass,” submitted for publication.
28.
Schaffner
M.
,
Bao
X.
, and
Penzkofer
A.
,
1992
, “
Principal Optical Constants Measurement of Uniaxial Crystal CdSe in the Wavelength Region Between 380 and 950 nm
,”
Applied Optics
, Vol.
31
, pp.
4546
4551
.
29.
Siegel, R., and Howell, R., 1992, Thermal Radiation Heat Transfer, 3rd ed., Hemisphere, Washington, DC.
30.
Swartz
E. T.
, and
Pohl
R. O.
,
1989
, “
Thermal Boundary Resistance
,”
Review of Modern Physics
, Vol.
61
, pp.
605
668
.
31.
Tien
C. L.
, and
Chen
G.
,
1994
, “
Challenges in Microscale Radiative and Conductive Heat Transfer
,”
ASME JOURNAL OF HEAT TRANSFER
, Vol.
116
, pp.
799
807
.
32.
Viskanta
R.
, and
Crosbie
A.
,
1967
, “
Radiative Transfer Through a Spherical Shell of Absorbing-Emitting Gray Medium
,”
Journal of Quantitative Spectroscopy and Radiative Transfer
, Vol.
7
, pp.
871
889
.
33.
Weisbuch, C., and Vinter, B., 1991, Quantum Semiconductor Structures, Academic Press, Boston.
34.
Yajima, T., Yoshihara, K., Harris, C. B., and Shionoya, S., eds., 1988, Ultrafast Phenomena VI, Springer-Verlag, Berlin.
35.
Zhang
G.
,
Hu
C.
,
Yu
P.
,
Chiang
S.
,
Eltoukhy
S.
, and
Hamdy
E.
,
1995
, “
An Electro-Thermal Model for Metal-to-Metal Antifuse With Thin Insulation Oxide Layers
,”
IEEE Transactions on Electron Devices
, Vol.
42
, pp.
1548
1558
.
36.
Ziman, J. M., 1960, Electrons and Phonons, Clarendon Press, Oxford.
This content is only available via PDF.
You do not currently have access to this content.