This paper is concerned with prediction of the air-side heat transfer coefficient of the louver fin geometry used in automotive radiators. An analytical model was developed to predict the heat transfer coefficient and friction factor of the louver fin geometry. The model is based on boundary layer and channel flow equations, and accounts for the “flow efficiency” in the array, as previously reported by Webb and Trauger. The model has no empirical constants. The model allows independent specifications of all of the geometric parameters of the louver fin. This includes the number of louvers over the flow depth, the louver width and length, and the louver angle. The model was validated by predicting the heat transfer coefficient and friction factor of 32 louver arrays tested by Davenport, which spanned hydraulic diameter based Reynolds numbers of 300–2800. At the highest Reynolds number, all of the heat transfer coefficients were predicted within a maximum error of −14 / + 25 percent, and a mean error of ± 8 percent. The high Reynolds number friction factors were predicted with a maximum error −22 /+ 26 percent, with a mean error of ± 8 percent. The error ratios were slightly higher at the lowest Reynolds numbers.

This content is only available via PDF.
You do not currently have access to this content.