Analytical similarity solutions are derived for the problem of transient one-dimensional flow and freezing of a liquid in an initially dry permeable half-space. The structure of the flow consists of three regions: a liquid zone in which the temperature decreases to the freezing temperature, a central two-phase zone where the temperature is at the freezing point, and a leading gas-filled region in which the temperature is nearly undisturbed. The propagation velocity of this intrusion is determined as a function of the subcooling, latent heat, and other process parameters. As the inlet temperature approaches the freezing temperature, the governing equations admit a pair of solutions having propagation velocities that sometimes differ by more than an order of magnitude.

This content is only available via PDF.
You do not currently have access to this content.