In vertical gas-loaded two-phase reflux thermosyphons, the temperature and concentration gradients between the active and shut-off regions can create double-diffusive mixed convection flows. When the noncondensable gas molecular weight is greater than that of the vapor, different steady and time-dependent gas recirculation patterns develop, similar to those observed during Rayleigh-Be´nard convection in vertical slots. Experimental results presented here show that bifurcations from axisymmetric to three-dimensional, then asymmetric, and finally multiple distinct gas-flow patterns occur as the Rayleigh number increases. Ultimately, a sudden transition to a large-amplitude oscillatory gas flow takes place. Detailed concentration maps and power-density spectra from point wet-bulb temperature measurements clearly chart these transitions. These results impact the design of many condensing systems where noncondensables are present.

This content is only available via PDF.
You do not currently have access to this content.