Boiling heat transfer from a sphere embedded in a porous medium composed of nonheated glass particles was studied under steady-state and transient quenching conditions. In the experiments, the diameter of the nonheated glass particles forming the porous layers was varied parametrically. Freon-113 was used as the test liquid. Experimental results showed that the maximum heat flux increased monotonically with increasing glass particle diameter and approached an asymptotic value corresponding to the maximum heat flux obtained in a pool free of glass particles. It was also observed that the minimum heat flux was nearly insensitive to the particle size and the film boiling heat transfer coefficient increased slightly with decreasing particle size. In the nucleate boiling region, the heat transfer coefficient showed a much weaker dependence on wall superheat in the presence of particles. Transient data indicated that the surface temperature was not uniform during quenching. Therefore, different maximum heat fluxes were obtained depending on the location of the thermocouple whose temperature history was employed in recovering the transient boiling curve. However, for some applications, cooling rates predicted by imposing the steady-state boiling curve may not be in large error.

This content is only available via PDF.
You do not currently have access to this content.