An area and time-averaged model for saturated pool boiling heat fluxes has been developed. In the model, which is valid in the upper end of nucleate boiling and in transition boiling, the existence of stationary vapor stems at the wall is assumed. The energy from the wall is conducted into the liquid macro/micro thermal layer surrounding the stems and is utilized in evaporation at the stationary liquid–vapor interface. The heat transfer rate into the thermal layer and the temperature distribution in it are determined by solving a two-dimensional steady-state conduction equation. The evaporation rate is given by the kinetic theory. The heater surface area over which the vapor stems exist is taken to be dry. Employing experimentally observed void fractions, not only the nucleate and transition boiling heat fluxes but also the maximum and minimum heat fluxes are predicted from the model. The maximum heat fluxes obtained from the model are valid only for surfaces that are not well wetted and includes the contact angle as one of the parameters.

This content is only available via PDF.
You do not currently have access to this content.