An induction electrohydrodynamic (EHD) pump in an axisymmetric, vertical configuration is studied theoretically. The model includes the effect of entrance conditions, buoyancy effects, secondary flow, and Joule heating. Primarily the forward (cooled wall) and to a lesser extent the backward (heated wall) modes are investigated. A finite difference technique is used to obtain the numerical solutions. A set of these solutions is presented to show the influence of the controlling factors of operating an induction EHD pump. The results indicate that the entrance temperature profile plays an important role in the operation of the pump because steeper profiles produce higher velocities. The pump must be operated at an optimum frequency, wavelength, and electric conductivity level.

This content is only available via PDF.
You do not currently have access to this content.