The thermal conductivity of a 304L stainless steel powder metallurgy (P/M) material was experimentally determined to support research aimed at understanding the poor machining characteristics of P/M austenitic stainless steels. Thermal conductivity measurements were made on samples having relative densities ranging between 64 and 90 percent of theoretical density since workpieces requiring machining are often fabricated in that density range. The measurements were also made over a temperature range of 50 to 300°C since workpiece temperatures can attain levels this high during the machining operation. The thermal conductivity was measured using an apparatus having a design based on the comparative method. The experimentally determined thermal conductivities were modeled by mathematical models found in the technical literature and modified for the present study. The thermal conductivity of this material increases with increasing relative density and temperature; it is also dependent on the matrix structure for a given porosity.

This content is only available via PDF.
You do not currently have access to this content.