Various methods have been proposed to solve the inverse heat conduction problem of determining a boundary condition at the surface of a body from discrete internal temperature measurements. These include function specification and regularization methods. This paper investigates the various components of the regularization method using the sequential regularization method proposed by Beck and Murio (1986). Specifically, the effects of the regularization order and the influence of the regularization parameter are analyzed. It is shown that as the order of regularization increases, the bias errors decrease and the variance increases. Comparatively, the zeroth regularization has higher bias errors and the second-order regularization is more sensitive to random errors. As the regularization parameter decreases, the sensitivity of the estimator to random errors is shown to increase; on the other hand, the bias errors are shown to decrease.

This content is only available via PDF.
You do not currently have access to this content.