The generalized analytical derivation presented here enables one to obtain solutions to the diffusion equation in complex heterogeneous geometries. A new method of constructing basis functions is introduced that preserves the continuity of temperature and heat flux throughout the domain, specifically at the boundary of each inclusion. A set of basis functions produced in this manner can be used in conjunction with the Green’s function derived through the Galerkin procedure to produce a useful solution method. A simple geometry is selected for comparison with the finite difference method. Numerical results obtained by this method are in excellent agreement with finite-difference data.

This content is only available via PDF.
You do not currently have access to this content.