Steady and transient analytical investigation with the Galerkin method has been performed on natural convection in a horizontal porous annulus heated from the inner surface. Three families of convergent solutions, appearing one after another with increasing RaDa numbers, were obtained corresponding to different initial conditions. Despite the fact that the flow structures of two branching solutions are quite different, there exists a critcal RaDa number at which their overall heat transfer rates have the same value. The bifurcation point was determined numerically, which coincided very well with that from experimental observation. The solutions in which higher wavenumber modes are dominant agree better with experimental data of overall heat transfer.

This content is only available via PDF.
You do not currently have access to this content.