Experimental data are presented for local heat transfer rates in the tube downstream of an abrupt 2:1 expansion. Water, with a nominal inlet Prandtl number of 6, was used as the working fluid. In the upstream tube, the Reynolds number was varied from 30,000 to 100,000 and the swirl number was varied from zero to 1.2. A uniform wall heat flux boundary condition was employed, which resulted in wall-to-bulk fluid temperatures ranging from 14° C to 50°C. Plots of local Nusselt numbers show a sharply peaked behavior at the point of maximum heat transfer, with increasing swirl greatly exaggerating the peaking. As swirl incressed from zero to its maximum value, the location of peak Nusselt numbers was observed to shift from 8.0 to 1.5 step heights downstream of the expansion. This upstream movement of the maximum Nusselt number was accompanied by an increase in its magnitude from 3 to 9.5 times larger than fully developed tube flow values. For all cases, the location of maximum heat transfer occurred upstream of the flow reattachment point.

This content is only available via PDF.
You do not currently have access to this content.