Melting of unrestrained ice in a horizontal cylindrical capsule has been investigated experimentally to determine the interaction of fluid flow induced by motion of the solid and natural convection with density inversion of the water–ice system. During the melting process the ice is drawn by buoyancy to the top of the heated cylinder where close-contact melting occurs. Natural convection-dominated melting whose intensity depends on wall temperature prevails in the liquid region below. Three distinct flow regimes were identified for the cylinder wall temperatures of 3.5, 7, and 12° C studied. The flow structure for temperatures below the inversion point is similar to that for melting of unfixed n-heptadecane reported previously. Photographs of flow regimes are presented, and dependence of the solid–liquid interface morphology on the flow structure is discussed.

This content is only available via PDF.
You do not currently have access to this content.