Weakly buoyant turbulent wall plumes were studied for surfaces inclined 0–62 deg from the vertical (stable orientation). The source of buoyancy was carbon dioxide/air mixtures in still air, assuring conserved buoyancy flux. Profiles of mean and fluctuating concentrations and streamwise velocities were measured at several stations along the wall. Flow structure was also observed by Mie scattering from a laser light sheet. Tests with inclined walls showed that low levels of ambient stratification caused the wall plumes to entrain fluid in the horizontal direction, rather than normal to the wall. Structure predictions were made for vertical wall plumes, considering Favre-averaged mixing-length and k–ε–g models of turbulence. Both methods yielded encouraging predictions of flow structure, in spite of the presence of large-scale coherent turbulent structures observed in the flow visualization.

This content is only available via PDF.
You do not currently have access to this content.