The problem of laminar film condensation of a saturated vapor flowing over a cold horizontal cylinder is investigated. A rigorous formulation of the governing equations for the vapor boundary layer and the condensed liquid film, including both the gravity-driven body forces and the imposed pressure gradient caused by the vapor flow, is presented. A generalized transformation of the governing equations allows a wide range of Froude numbers to be investigated. A unique value of the Froude number is defined which allows a distinction between the gravity-dominated flow (Fr→0) and the forced flow (Fr→∞) and basically defines the overlap region for the two solution domains. Numerical solutions are obtained in the merging flow regions controlled by both driving forces. The effects of density/viscosity ratio at the liquid-vapor interface, Prandtl number, Jakob number, and Froude number on the heat transfer characteristics are presented.

This content is only available via PDF.
You do not currently have access to this content.