A numerical study is reported on hydrodynamic and heat transfer characteristics in a periodically corrugated wall channel for both laminar and turbulent flows. For turbulent flows the k-ε turbulence model with a refined near-wall model is adopted for the computation of the flow field for step ratios H/W ranging from two to four. The Reynolds number considered in this study varies from 10 to 25,000. The solution method of the governing transport equations is based on the modified hybrid scheme. As a result of extensive computations, the complex flow patterns in the perpendicularly corrugated wall channel are clarified and the mechanisms of heat transfer are explained relating to the flow phenomena of separation, deflection, recirculation, and reattachment. Finally it was observed that the effect of the step ratio on the local Nusselt number is minor. Moreover, it was found that both skin friction and heat transfer patterns change drastically from laminar to turbulent flows.

This content is only available via PDF.
You do not currently have access to this content.