In this paper, the authors develop a general analytical model to predict the amount of surface that is flooded during condensation on a horizontal, integral-fin tube. The model is based on capillary equations that predict the amount of liquid rise on a vertical u-shaped channel. The space between adjacent integral fins forms such a channel. The authors compare the model to test data taken during condensation on three integral-fin tubes (748-to-1378 fpm) and a range of fluid properties. The analytical model predicts the amount of liquid retention on a horizontal, integral-fin tube within ± 10 percent over most of the data. The analysis is performed for the case of negligible vapor shear.

This content is only available via PDF.
You do not currently have access to this content.