An experimental investigation has been performed to determine the effects of a low-quality (≤ 20 percent) upward flowing mixture on the nucleate boiling on a single horizontal lube. An electrically heated, 12.7-mm-dia tube was centered in a plane wall vertical channel, the width of which resulted in channel width-to-tube diameter ratios (w/d) of 1.16 and 1.95. The working fluid was R-113. The two-phase heat transfer data showed a variety of effects. For a fixed w/d, pressure (P), and quality (x), the average heat transfer coefficients (h) increased with increasing mass velocity (G), but the effect of G decreased as the wall superheat (ΔT) increased. For a fixed w/d, G and x, h increased as the pressure increased except at low ΔT’s where the reverse was found. For fixed w/d, P and G, h increased with increasing quality with the effect appearing to be more pronounced at the lower pressure. At a fixed P, G and x, h was at larger w/d ratios at small ΔT’s, but as the wall superheat increased an inversion occured and h became smaller at the larger w/d ratio. The behavior exhibited in this experiment can be explained in terms of the velocity of the fluid flowing past the test section. The data were successfully predicted to within an average deviation of ±11.6 percent using a Chen-type correlation. Data from the literature also were predicted well.

This content is only available via PDF.
You do not currently have access to this content.