The pattern of circulation and the rate of heat transfer were determined experimentally and also by three-dimensional, finite-difference calculations for an inclined 2 × 1 × 1 rectangular enclosure with a 1 × 1 segment of the lower 2 × 1 surface at a uniform temperature, the other 1 × 1 segment and four side walls insulated, and the upper surface at a lower uniform temperature. As contrasted with an enclosure heated and cooled on the horizontal surfaces, a fluid motion occurs and the rate of heat transfer exceeds that for pure conduction for all temperature differences and orientations. The effects of elevation of the heated and insulated segments were investigated, as well as of inclination about the longer dimension. Despite differences in the Prandtl and Rayleigh numbers, the observed and predicted patterns of circulation are in good agreement, and the measured and predicted rates of heat are in qualitative agreement.

This content is only available via PDF.
You do not currently have access to this content.