A multiwavelength laser transmission technique is used to determine soot volume fraction fields and aproximate particle size distributions in a forced flow combusting boundary layer. Measurements are made in diffusion flames of polymethylmethacrylate (PMMA) and five liquid hydrocarbon fuels (n-heptane, iso-octane, cyclohexane, cyclohexene, and toluene) with ambient oxygen mass fractions in the range of 0.23 ≲ Y0∞ ≲ 0.50. Soot is observed in a region between the pyrolyzing fuel surface and the flame zone. Soot volume fraction increases monotonically with Y0∞, e.g., n-heptane and PMMA are similar with soot volume fractions, fν, ranging from fν ∼ 5 × 10−7 at Y0∞ = 0.23 to fν ∼ 5 × 10−6 at Y0∞ = 0.50. For an oxygen mass fraction the same as air, Y0∞ = 0.23, soot volume fractions are approximately the same as values previously reported in pool fires and a free combusting boundary layer. However, the shape of the fν profile changes with more soot near the flame in forced flow than in free flow due to the different y-velocity fields in these two systems. For all fuels tested, a most probable particle radius is between 20 nm and 80 nm, and does not appear to change substantially with location, fuel, or oxygen mass fraction.

This content is only available via PDF.
You do not currently have access to this content.