Results are presented of a combined numerical and experimental study of steady, forced-convection heat tranfer in a spherical annulus heat exchanger with 53°C water flowing in an annulus formed by an insulated outer sphere and a 0°C inner sphere. The inner sphere radius is 139.7 mm, the outer sphere radius is 168.3 mm. The transient laminar incompressible axisymmetric Navier-Stokes equations and energy equation in spherical coordinates are solved by an explicit finite-difference solution technique. Turbulence and buoyancy are neglected in the numerical analysis. Steady solutions are obtained by allowing the transient solution to achieve steady state. Numerically obtained temperature and heat-flux rate distributions are presented for gap Reynolds numbers from 41 to 465. Measurements of inner sphere heat-flux rate distribution, flow separation angle, annulus fluid temperatures, and total heat transfer are made for Reynolds numbers from 41 to 1086. The angle of separation along the inner sphere is found to vary as a function of Reynolds number. Measured total Nusselt numbers agree with results reported in the literature to within 2.0 percent at a Reynolds number of 974, and 26.0 percent at a Reynolds number of 66.

This content is only available via PDF.
You do not currently have access to this content.