Transient natural convection adjacent to a flat vertical surface with appreciable thermal capacity is investigated both experimentally and numerically. The surface is immersed in initially quiescent water, and has the same uniform temperature distribution. It is then suddenly loaded with a uniform and constant heat flux thereby generating a buoyancy induced flow adjacent to the surface. Surface temperature response was recorded by means of thermocouples embedded inside the surface, and boundary layer temperature measurements were also taken. An explicit finite difference numerical scheme is used to obtain solutions to the partial differential equations describing the conservation of mass, momentum, and energy in their time dependent form. Good agreement between the calculated and measured results is observed for both the heating and cooling transient processes.

This content is only available via PDF.
You do not currently have access to this content.