This work develops an analytical model for the friction factor with turbulent flow in internally finned channels. Such channels are an important class of enhanced heat transfer surfaces. Until this work, no analytical models for the turbulent friction factor have been proposed. The present model assumes the validity of the Law of the Wall and applies the logarithmic velocity distribution to the interfin and core regions of the flow. Theoretically based friction factor equations are developed for internally finned circular tubes and rectangular channels. The model predicts Carnavos data for 21 internally finned tubes within ± 10 percent. Friction factor data were taken for five internally finned, rectangular channels. The analytical model predicts these data within ± 10 percent, except for the case of a very high fin.

This content is only available via PDF.
You do not currently have access to this content.