Two-dimensional arrays of circular jets of air impinging on a heat transfer surface parallel to the jet orifice plate are considered. The air, after impingement, is constrained to exit in a single direction along the channel formed by the surface and the jet plate. The downstream jets are subjected to a crossflow originating from the upstream jets. Experimental and theoretical results obtained for streamwise distributions of jet and crossflow velocities are presented and compared. Measured Nusselt numbers resolved to one streamwise hole spacing are correlated with individual spanwise row jet Reynolds numbers and crossflow-to-jet velocity ratios. Correlations are presented for both inline and staggered hole patterns including effects of geometric parameters: streamwise hole spacing, spanwise hole spacing, and channel height, normalized by hole diameter. The physical mechanisms influencing heat transfer coefficients as a function of flow distribution and geometric parameters are also discussed.

This content is only available via PDF.
You do not currently have access to this content.