Abstract

It is well known that piles embedded in sand accumulate lateral deformation (displacement and rotation) when subjected to horizontal cyclic loading. The rate of accumulation depends on various parameters, such as loading conditions and properties of the pile-soil system. For nearly rigid piles, such as monopile foundations for offshore wind turbines, an essential aspect is the type of loading, which is determined by the ratio of the cyclic minimum load to cyclic maximum load. Several studies have shown that asymmetric two-way loading generally results in larger accumulated pile deformation compared with other types of loading, especially one-way loading with complete unloading in each cycle. This article presents the planning, execution, and evaluation of physical 1g small-scale model tests on the deformation accumulation of laterally loaded rigid piles due to cyclic loading focusing on soil deformations resulting from various cyclic load ratios. To visualize soil deformation fields and rearrangement processes within the soil profiles, particle image velocimetry (PIV) was applied in the tests. The evaluation of the model test results provides insights into varying accumulation rates and highlights the capabilities as well as limitations of PIV. The observations are summarized under the section of findings, which may assist in planning future PIV experiments.

References

1.
Adrian
,
R. J.
1991
. “
Particle-Imaging Techniques for Experimental Fluid Mechanics
.”
Annual Review of Fluid Mechanics
23
, no. 
1
(January):
261
304
. https://doi.org/10.1146/annurev.fl.23.010191.001401
2.
Bhattacharya
,
S.
,
Nikitas
G.
,
Arany
L.
, and
Nikitas
N.
.
2017
. “
Soil-Structure Interactions for Offshore Wind Turbines
.”
Engineering & Technology Reference
2017
: 19. https://doi.org/10.1049/etr.2016.0019
3.
Cuéllar
,
P.
Pile Foundations for Offshore Wind Turbines: Numerical and Experimental Investigations on the Behavior under Short-Term and Long-Term Cyclic Loading
.” PhD diss.,
University of Technology Berlin
,
2011
.
4.
Frick
,
D.
and
Achmus
M.
.
2020
. “
An Experimental Study on the Parameters Affecting the Cyclic Lateral Response of Monopiles for Offshore Wind Turbines in Sand
.”
Soil and Foundation
60
, no. 
6
(December):
1570
1587
. https://doi.org/10.1016/j.sandf.2020.10.004
5.
Frick
,
D.
and
Achmus
M.
.
2022
. “
A Model Test Study on the Parameters Affecting the Cyclic Lateral Response of Monopile Foundations for Offshore Wind Turbines Embedded in Non-cohesive Soils
.”
Wind Energy Science
7
, no. 
4
(July):
1399
1419
. https://doi.org/10.5194/wes-7-1399-2022
6.
Iskander
,
M.
2010
.
Modelling with Transparent Soils: Visualizing Soil Structure Interaction and Multi Phase Flow, Non-intrusively
.
Berlin, Germany
:
Springer
.
7.
Klinkvort
,
R. T.
and
Hededal
O.
.
2013
. “
Lateral Response of Monopile Supporting an Offshore Wind Turbine
.”
Geotechnical Engineering
166
, no. 
2
(April):
147
158
. https://doi.org/10.1680/geng.12.00033
8.
LeBlanc
,
C.
,
Houlsby
G. T.
, and
Byrne
B. W.
.
2010
. “
Response of Stiff Piles in Sand to Long-Term Cyclic Lateral Loading
.”
Géotechnique
60
, no. 
2
(February):
79
90
. https://doi.org/10.1680/geot.7.00196
9.
Li
,
Q.
,
Askarinejad
A.
, and
Gavin
K.
.
2022
. “
Lateral Response of Rigid Monopiles Subjected to Cyclic Loading: Centrifuge Modelling
.”
Geotechnical Engineering
175
, no. 
4
(August):
426
438
. https://doi.org/10.1680/jgeen.20.00088
10.
Lin
,
S.-S.
and
Liao
J.-C.
.
1999
. “
Permanent Strains of Piles in Sand due to Cyclic Lateral Loads
.”
Journal of Geotechnical and Geoenvironmental Engineering
125
, no. 
9
(September):
798
802
. https://doi.org/10.1061/(ASCE)1090-0241(1999)125:9(798)
11.
Little
,
R. L.
and
Briaud
J.-L.
.
1988
.
Full Scale Cyclic Lateral Load Tests on Six Single Piles in Sand, Report AD-A199 115
.
Fort Belvoir, VA
:
Defense Technical Information Center
.
12.
Raffel
,
M.
,
Willert
C. E.
,
Wereley
S. T.
, and
Kompenhaus
J.
.
2007
.
Particle Image Velocimetry: A Practical Guide
, 2nd ed.
Berlin, Germany
:
Springer
.
13.
Randolph
,
M.
and
Gourvenec
S.
.
2011
.
Offshore Geotechnical Engineering
.
Abington, UK
:
Spon Press
.
14.
Rechenmacher
,
A. L.
and
Finno
R. J.
.
2004
. “
Digital Image Correlation to Evaluate Shear Banding in Dilative Sands
.”
Geotechnical Testing Journal
27
, no. 
1
(January):
13
22
.
15.
Richards
,
I. A.
,
Byrne
B. W.
, and
Houlsby
G. T.
.
2020
. “
Monopile Rotation under Complex Cyclic Lateral Loading in Sand
.”
Géotechnique
70
, no. 
10
(October):
916
930
. https://doi.org/10.1680/jgeot.18.P.302
16.
Stanier
,
S. A.
,
Blaber
J.
,
Take
W. A.
, and
White
D. J.
.
2016
. “
Improved Image-Based Deformation Measurement for Geotechnical Applications
.”
Canadian Geotechnical Journal
53
, no. 
5
(May):
727
739
. https://doi.org/10.1139/cgj-2015-0253
17.
Stanier
,
S.
,
Dijkstra
J.
,
Leśniewska
D.
,
Hambleton
J.
,
White
D.
, and
Wood
D. M.
.
2016
. “
Vermiculate Artefacts in Image Analysis of Granular Materials
.”
Computers and Geotechnics
72
(February):
100
113
. https://doi.org/10.1016/j.compgeo.2015.11.013
18.
Sveen
,
J. K.
and
Cowen
E. A.
.
2004
. “
Quantitative Imaging Techniques and their Application to Wavy Flow
.” In
PIV and Water Waves
, edited by
Grue
J.
,
Liu
P. L.-F.
, and
Pedersen
G. K.
,
1
49
. Hackensack, NJ:
World Scientific
,
2004
. https://doi.org/10.1142/9789812796615_0001
19.
Take
,
W. A.
2015
. “
Thirty-Sixth Canadian Geotechnical Colloquium: Advances in Visualization of Geotechnical Processes through Digital Image Correlation
.”
Canadian Geotechnical Journal
52
, no. 
9
:
1199
1220
. https://doi.org/10.1139/cgj-2014-0080
20.
Thielicke
,
W.
and
Stamhuis
E. J.
.
2014
. “
PIVlab–Towards User-Friendly, Affordable and Accurate Digital Particle Image Velocimetry in MATLAB
.”
Journal of Open Research Software
2
, no. 
1
(October): e30. https://doi.org/10.5334/jors.bl
21.
Truong
,
P.
,
Lehane
B. M.
,
Zania
V.
, and
Klinkvort
R. T.
.
2019
. “
Empirical Approach Based on Centrifuge Testing for Cyclic Deformations of Laterally Loaded Piles in Sand
.”
Géotechnique
69
, no. 
2
(February):
133
145
. https://doi.org/10.1680/jgeot.17.P.203
22.
Manoliu
,
I.
,
Dimitriu
D. V.
,
Radulescu
N.
, and
Dobrescu
G. H.
.
1985
. “
Load-Deformation Characteristics of Drilled Piers
.” In
Proceedings of the 11th International Conference on Soil Mechanics and Foundation Engineering
,
1553
1558
. London:
International Society for Soil Mechanics and Geotechnical Engineering
.
23.
Wang
,
S.
,
Idinger
G.
, and
Wu
W.
.
2021
. “
Centrifuge Modelling of Rainfall-Induced Slope Failure in Variably Saturated Soil
.”
Acta Geotechnica
16
, no. 
9
(September):
2899
2916
. https://doi.org/10.1007/s11440-021-01169-x
24.
White
,
D. J.
and
Bolton
M. D.
.
2004
. “
Displacement and Strain Paths during Plain-Strain Model Pile Installation in Sand
.”
Géotechnique
54
, no. 
6
(August):
375
397
. https://doi.org/10.1680/geot.2004.54.6.375
25.
White
,
D. J.
,
Take
W. A.
,
Bolton
M. D.
, and
Munachen
S. E.
.
2001
. “
A Deformation Measuring System for Geotechnical Testing Based on Digital Imaging, Close-Range Photogrammetry, and PIV Image Analysis
.” In
Proceedings of the 15th International Conference on Soil Mechanics and Geotechnical Engineering
,
539
542
. Boca Raton, FL:
CRC Press
,
2001
.
26.
White
,
D. J.
,
Take
W. A.
, and
Bolton
M. D.
.
2003
. “
Soil Deformation Measurement Using Particle Image Velocimetry and Photogrammetry
.”
Géotechnique
53
, no. 
7
(September):
619
631
. https://doi.org/10.1680/geot.2003.53.7.619
27.
Yuan
,
B.
,
Xu
K.
,
Wang
Y.
,
Chen
R.
, and
Luo
Q.
.
2017
. “
Investigation of Deflection of a Laterally Loaded Pile and Soil Deformation Using the PIV Technique
.”
International Journal of Geomechanics
17
, no. 
6
(June): 04016138. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000842
This content is only available via PDF.
You do not currently have access to this content.