Abstract

Rheological properties of granular soils under vibratory, cyclic, and transient loading can be interpreted at the grain level where the solid particles interact with one another. Macroscopic deformations result mainly from the principal following mechanisms: (1) compaction mechanism that forces the solid particles closer together and leads to a denser packing; (2) distortion mechanism governed by irreversible grain slidings generating heat; and (3) attrition mechanism caused by breakage of asperities and crushing of grains under high pressures.

The infrared vibrothermography used in our laboratory is a nondestructive test that allows records and observations in real time of heat patterns produced by the dissipation of energy caused by friction between grains. Such dissipative heat occurs when granular soil is subjected to vibratory loading exceeding the characteristic threshold, and it shows with evidence the distortion mechanism.

The infrared thermographic technique described, which couples mechanical and thermal energy, offers the potential of directly monitoring the stress state of particle rearrangement or characteristic threshold and predicting the macroscopic mechanical response of granular materials.

References

1.
Hardin
,
B. O.
, “
The Nature of Stress-Strain Behaviour of Soils
,”
Proceedings of the Conference on Earthquake Engineering and Soil Dynamics
, Publication 1,
American Society of Civil Engineers
,
Pasadena, CA
,
06
1978
, pp.
3
-
90
.
2.
Kirkpatrick
,
W. M.
, “
Discussion on Soil Properties and their Measurement
,”
Proceedings of the 5th Conference on Soil Mechanics and Foundation Engineering
, Vol.
III
,
Dunod
,
Paris
,
1961
, pp.
131
-
133
.
3.
Rowe
,
P. W.
, “
Theoretical Meaning and Observed Values of Deformation for Soils. Stress Strain Behaviour of Soils
,”
H. Parry
R. G.
, Ed.,
Cambridge, England
,
03
1971
, pp.
143
-
194
.
4.
Schofield
,
A. N.
and
Wroth
,
C. P.
,
Critical State Soil Mechanics
,
McGraw Hill
,
London
,
1968
.
5.
Luong
,
M. P.
, “
Stress-Strain Aspects of Cohesionless Soils Under Cyclic and Transient Loading
,”
Proceedings of the International Symp. on Soil Under Cyclic and Transient Loading
,
A. A. Balkema
,
Rotterdam, The Netherlands
,
01
1980
, pp.
315
-
324
.
6.
Nauroy
,
J. F.
and
Le Tirant
,
P.
, “
Comportement des Sédiments Carbonatés sous l'action de Chargements Cycliques
,”
Proceedings of the Xth ICSMFE
,
A. A.Balkema
,
Rotterdam, The Netherlands
,
06
1981
.
7.
Thanopoulos
,
I.
, “
Contribution à l'Etude du Comportement Cyclique des Milieux Pulvérulents
,” Thès de Docteur-Ingénieur,
Institut de Mécanique de Grenoble
, Grenoble, France,
10
1981
.
8.
Reifsnider
,
K. L.
,
Henneke
,
E. G.
, and
Stinchcomb
,
W. W.
, “
The Mechanics of Vibrothermography
,” in
Mechanics of Non Destructive Testing
,
W. W. Stinchcomb, Plenum Publishing Corp.
,
New York
,
1980
, pp.
249
-
276
.
9.
Loret
B.
and
Luong
M. P.
, “
A Double Deformation Mechanism Model for Sand
,”
Proceedings of the 4th International Conference on Numerical Methods in Geomechanics
,
A. A. Balkema
,
Rotterdam, The Netherlands
,
1982
, pp.
197
-
205
.
10.
Mindlin
,
R. D.
and
Deresiewicz
,
H.
, “
Elastic Spheres in Contact Under Varying Oblique Forces
,”
Journal of Applied Mechanics
 0021-8936, Vol.
20
,
1953
, pp.
327
-
344
.
11.
Bowden
,
F. P.
and
Tabor
,
D.
, “
Friction et Lubrification
,” Vol.
20
,
Monographies, Dunod
,
Paris
,
1959
.
12.
Johnson
,
K. L.
, “
Surface Interaction Between Elastically Loaded Bodies Under Tangential Forces
,”
Proceedings of the Royal Society
(
London
), Series 1, Vol.
230
,
1955
, pp.
531
-
548
.
13.
Nguyen
,
Q. S.
, “
Thermodynamique des Milieux Continus
,”
Cours D.E.A.-ENPC
,
Presses de l'Ecole Nationale des Ponts et Chausées
,
Paris
,
1984
.
This content is only available via PDF.
You do not currently have access to this content.