Abstract

The extent to which hydrophobic soils can be used in geotechnical engineering practice depends upon a commensurately increased understanding of how fundamental relationships apply in hydrophobic systems, such as moisture-density. This research is to determine the compaction characteristics of organo-silane (OS) treated soils using conventional geotechnical laboratory equipment. The intrinsic difficulty in lubricating hydrophobic soils, which would allow for rearrangement of particles and subsequent compaction, arises from their inherent low surface energy. This work describes a method for compacting OS treated soils that leverages the necessary conditions such as reaction time and drying conditions for achieving hydrophobicity. Procedural steps for compacting OS treated soils are detailed by making use of a water-soluble hydrophobizing agent added to a fine-grained soil. Based on the critical dosage ratio of 1:100 (hydrophobizing agent: soil) identified, a molding water content is defined constituting of a fraction of the hydrophobizing agent. Soil water content and dry density curves are developed using the standard Proctor and Harvard miniature to contrast the resulting effect of OS. Compared to the untreated soil, a decrease in optimum water content was observed with the OS treated soil regardless of compaction technique used. For the standard Proctor test, a decrease in optimum water content from 12.0 to 9.2 % was observed, whereas compaction with the Harvard miniature showed a marginal decrease from 9.3 to 9.0 %. With the untreated soil, a relatively larger maximum dry density (2.17 g/cm3) was obtained with the standard Proctor compared to the Harvard miniature (2.05 g/cm3). The protocol defined to compact OS treated soils has shown to induce hydrophobicity spatially within the sample depth. These results suggest that engineered water repellency can be implemented in so far as treatment and compaction are largely synchronous and prior to reaction and hydrophobization.

References

1.
ASTM International.
2018
.
Standard Test Method for Determination of Pore Volume and Pore Volume Distribution of Soil and Rock by Mercury Intrusion Porosimetry
. ASTM D4404-18. West Conshohocken, PA:
ASTM International
, approved February 1,
2018
. https://doi.org/10.1520/D4404-18
2.
ASTM International.
2012
.
Standard Test Methods for Laboratory Compaction Characteristics of Soil Using Standard Effort (12 400 ft-lbf/ft3 (600 kN-m/m3))
. ASTM D698-12e2. West Conshohocken, PA:
ASTM International
, approved May 1,
2012
. https://doi.org/10.1520/D0698-12E02
3.
ASTM International.
2014
.
Standard Test Methods for Specific Gravity of Soil Solids by Water Pycnometer
(Withdrawn). ASTM D854-14. West Conshohocken, PA:
ASTM International
, approved May 1,
2014
. https://doi.org/10.1520/D0854-14
4.
Bachmann
,
J.
,
Ellies
A.
, and
Hartge
K. H.
.
2000
. “
Development and Application of a New Sessile Drop Contact Angle Method to Assess Soil Water Repellency
.”
Journal of Hydrology
231–232
(May):
66
75
. https://doi.org/10.1016/S0022-1694(00)00184-0
5.
Bardet
,
J.-P.
,
Jesmani
M.
, and
Jabbari
N.
.
2011
. “
Effects of Compaction on Shear Strength of Wax-Coated Sandy Soils
.”
Electron Journal of Geotechnical Engineering
16
(January):
451
461
.
6.
Bauters
,
T.
,
Steenhuis
T.
,
DiCarlo
D.
,
Nieber
J. L.
,
Dekker
L.
,
Ritsema
C.
,
Parlange
J.-Y.
, and
Haverkamp
R.
.
2000
. “
Physics of Water Repellent Soils
.”
Journal of Hydrology
231–232
(May):
233
243
. https://doi.org/10.1016/S0022-1694(00)00197-9
7.
Brooks
,
T.
,
Daniels
J. L.
,
Uduebor
M.
,
Cetin
B.
, and
Naqvi
M. W.
.
2022
. “
Engineered Water Repellency for Mitigating Frost Action in Iowa Soils
.” In
Geo-Congress 2022: Soil Improvement, Geosynthetics, and Innovative Geomaterials
, edited by
Lemnitzer
A.
and
Stuedlein
A. W.
,
448
456
.
Reston, VA
:
American Society of Civil Engineers
.
8.
Cabalar
,
A. F.
,
Khalaf
M. M.
, and
Isik
H.
.
2020
. “
A Comparative Study on the Undrained Shear Strength Results of Fall Cone and Vane Shear Tests in Sand–Clay Mixtures
.”
Arabian Journal of Geosciences
13
, no. 
11
(May): 395. https://doi.org/10.1007/s12517-020-05351-5
9.
Czachor
,
H.
,
Doerr
S. H.
, and
Lichner
L.
.
2010
. “
Water Retention of Repellent and Subcritical Repellent Soils: New Insights from Model and Experimental Investigations
.”
Journal of Hydrology
380
, nos. 
1–2
(January):
104
111
. https://doi.org/10.1016/j.jhydrol.2009.10.027
10.
Daniel
,
D. E.
and
Benson
C. H.
.
1990
. “
Water Content-Density Criteria for Compacted Soil Liners
.”
Journal of Geotechnical Engineering
116
, no. 
12
(December):
1811
1830
. https://doi.org/10.1061/(ASCE)0733-9410(1990)116:12(1811)
11.
Daniels
,
J. L.
,
Mehta
P.
,
Vaden
M.
,
Sweem
D.
,
Mason
M. D.
,
Zavareh
M.
, and
Ogunro
V.
.
2009
. “
Nano-scale Organo-silane Applications in Geotechnical and Geoenvironmental Engineering
.”
International Journal of Terraspace Science and Engineering
1
, no. 
1
(January):
21
30
.
12.
Dong
,
Y.
and
Pamukcu
S.
.
2015
. “
Thermal and Electrical Conduction in Unsaturated Sand Controlled by Surface Wettability
.”
Acta Geotechnica
10
(May):
821
829
. https://doi.org/10.1007/s11440-014-0317-0
13.
Hernandez
,
J.
,
Vargas
S.
,
Estevez
M.
,
Vázquez
G.
,
Zepeda
A.
, and
Rodríguez
R.
.
2005
. “
Hydrophobic Modification of an Expansive Soil Using Polymers and Organic Compounds: A Comparative Study with Lime
.”
Géotechnique
55
, no. 
8
(October):
613
616
. https://doi.org/10.1680/geot.2005.55.8.613
14.
Karakan
,
E.
,
2022
a. “
Relationships among Plasticity, Clay Fraction and Activity of Clay–Sand Mixtures
.”
Arabian Journal of Geosciences
15
, no. 
4
(February): 334. https://doi.org/10.1007/s12517-022-09482-9
15.
Karakan
,
E.
,
2022
b. “
Comparative Analysis of Atterberg Limits, Liquidity Index, Flow Index and Undrained Shear Strength Behavior in Binary Clay Mixtures
.”
Applied Sciences
12
, no. 
17
(August): 8616. https://doi.org/10.3390/app12178616
16.
Karakan
,
E.
and
Demir
S.
.
2018
. “
Effect of Fines Content and Plasticity on Undrained Shear Strength of Quartz-Clay Mixtures
.”
Arabian Journal of Geosciences
11
(December): 743. https://doi.org/10.1007/s12517-018-4114-1
17.
Karakan
,
E.
and
Demir
S.
.
2020
. “
Observations and Findings on Mechanical and Plasticity Behavior of Sand-Clay Mixtures
.”
Arabian Journal of Geosciences
13
(September): 983. https://doi.org/10.1007/s12517-020-05762-4
18.
Karakan
,
E.
,
Shimobe
S.
, and
Sezer
A.
.
2020
. “
Effect of Clay Fraction and Mineralogy on Fall Cone Results of Clay–Sand Mixtures
.”
Engineering Geology
279
(December): 105887. https://doi.org/10.1016/j.enggeo.2020.105887
19.
Keatts
,
M. I.
,
Daniels
J. L.
,
Langley
W. G.
,
Pando
M. A.
, and
Ogunro
V. O.
.
2018
. “
Apparent Contact Angle and Water Entry Head Measurements for Organo-silane Modified Sand and Coal Fly Ash
.”
Journal of Geotechnical and Geoenvironmental Engineering
144
, no. 
6
(March): 04018030. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001887
20.
Kuriakose
,
B.
,
Abraham
B. M.
,
Sridharan
A.
, and
Jose
B. T.
.
2017
. “
Water Content Ratio: An Effective Substitute for Liquidity Index for Prediction of Shear Strength of Clays
.”
Geotechnical and Geological Engineering
35
(March):
1577
1586
. https://doi.org/10.1007/s10706-017-0193-0
21.
Lee
,
C.
,
Yang
H. J.
,
Yun
T. S.
,
Choi
Y.
, and
Yang
S.
.
2015
. “
Water-Entry Pressure and Friction Angle in an Artificially Synthesized Water-Repellent Silty Soil
.”
Vadose Zone Journal
14
, no. 
4
(March):
1
9
. https://doi.org/10.2136/vzj2014.08.0106
22.
Lin
,
H.
,
Liu
F. Y.
,
Lourenço
S. D. N.
,
Schwantes
G.
,
Trumpf
S.
,
Holohan
D.
, and
Beckett
C. T. S.
.
2021
. “
Stabilization of an Earthen Material with Tung Oil: Compaction, Strength and Hydrophobic Enhancement
.”
Construction and Building Materials
290
(July): 123213. https://doi.org/10.1016/j.conbuildmat.2021.123213
23.
Lin
,
H.
,
Weitz
H. J.
,
Paton
G. I.
,
Hallett
P. D.
,
Hau
B. C.
, and
Lourenço
S. D.
.
2022
. “
Ecotoxicity Assessment of Hydrophobised Soils
.”
Environmental Geotechnics
40
(April):
1
9
. https://doi.org/10.1680/jenge.21.00096
24.
Loshelder
,
J. I.
,
Chanis
A. L. E.
, and
Coffman
R. A.
.
2023
. “
Proctor and Harvard Miniature Compaction Energy Comparison
.”
Geotechnical Testing Journal
46
, no. 
2
(March/April):
364
378
. https://doi.org/10.1520/GTJ20210087
25.
Mahedi
,
M.
,
Satvati
S.
,
Cetin
B.
, and
Daniels
J. L.
.
2020
. “
Chemically Induced Water Repellency and the Freeze–Thaw Durability of Soils
.”
Journal of Cold Regions Engineering
34
, no. 
3
(June): 04020017. https://doi.org/10.1061/(ASCE)CR.1943-5495.0000223
26.
Malisher
,
M.
,
Daniels
,
J.
,
Uduebor
M.
, and
Saulick
Y.
.
2023
. “
Compaction and Strength Characteristics of Engineered Water Repellent Frost Susceptible Soils
.” In
Geo-Congress 2023: Soil Improvement, Geoenvironmental, and Sustainability
, edited by
Rathje
E.
,
Montoya
B. M.
, and
Wayne
M. H.
,
452
461
.
Reston, VA
:
American Society of Civil Engineers
.
27.
Movasat
,
M.
and
Tomac
I.
.
2021
. “
Assessment of Physical Properties of Water-Repellent Soils
.”
Journal of Geotechnical and Geoenvironmental Engineering
147
, no. 
9
(July): 06021010. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002604
28.
Orozco
,
L. F.
and
Caicedo
B.
.
2017
. “
Water Migration in Unsaturated Partially Hydrophobic Soils
.”
Géotechnique Letters
7
, no. 
1
(March):
18
23
. https://doi.org/10.1680/jgele.16.00105
29.
Reddy
,
B. V.
and
Jagadish
K. S.
.
1993
. “
The Static Compaction of Soils
.”
Géotechnique
43
, no. 
2
(May):
337
341
. https://doi.org/10.1680/geot.1993.43.2.337
30.
Ren
,
X. C.
,
Lai
Y. M.
,
Zhang
F. Y.
, and
Hu
K.
.
2015
. “
Test Method for Determination of Optimum Moisture Content of Soil and Maximum Dry Density
.”
KSCE Journal of Civil Engineering
19
(January):
2061
2066
. https://doi.org/10.1007/s12205-015-0163-0
31.
Saulick
,
Y.
,
Lourenço
S. D. N.
, and
Baudet
B. A.
.
2017
. “
A Semi-automated Technique for Repeatable and Reproducible Contact Angle Measurements in Granular Materials Using the Sessile Drop Method
.”
Soil Science Society of America Journal
81
, no. 
2
(April):
241
249
. https://doi.org/10.2136/sssaj2016.04.0131
32.
Sivrikaya
,
O.
,
Togrol
E.
, and
Kayadelen
C.
.
2008
. “
Estimating Compaction Behavior of Fine-Grained Soils Based on Compaction Energy
.”
Canadian Geotechnical Journal
45
, no. 
6
(June):
877
887
. https://doi.org/10.1139/T08-022
33.
Subedi
,
S.
,
Kawamoto
K.
,
Jayarathna
L.
,
Vithanage
M.
,
Moldrup
P.
,
Wollesen de Jonge
L.
, and
Komatsu
T.
.
2012
. “
Characterizing Time-Dependent Contact Angles for Sands Hydrophobized with Oleic and Stearic Acids
.”
Vadose Zone Journal
11
, no. 
1
(February):
53
62
. https://doi.org/10.2136/vzj2011.0055
34.
Uduebor
,
M.
,
Daniels
J.
,
Naqvi
M. W.
, and
Cetin
B.
.
2022
. “
Engineered Water Repellency in Frost Susceptible Soils
.” In
Geo-Congress 2022: Soil Improvement, Geosynthetics, and Innovative Geomaterials
, edited by
Lemnitzer
A.
and
Stuedlein
A. W.
,
457
466
.
Reston, VA
:
American Society of Civil Engineers
.
35.
Van Der Watt
,
H. V. H.
1969
. “
Influence of Particle Size Distribution on Soil Compactibility
.”
Agrochemophysica
1
, no. 
3
(January):
79
86
.
36.
Wilson
,
S. D.
1970
. “
Suggested Method of Test for Moisture-Density Relations of Soils Using Harvard Compaction Apparatus
.” In
Special Procedures for Testing Soil and Rock for Engineering Purposes: Fifth Edition, ASTM STP479-EB
,
101
103
.
West Conshohocken, PA
:
ASTM International
. https://doi.org/10.1520/STP38484S
37.
Zheng
,
S.
,
Lourenço
S. D.
,
Cleall
P. J.
,
Chui
T. F. M.
,
Ng
A. K.
, and
Millis
S. W.
.
2017
. “
Hydrologic Behavior of Model Slopes with Synthetic Water Repellent Soils
.”
Journal of Hydrology
554
(November):
582
599
. https://doi.org/10.1016/j.jhydrol.2017.09.013
This content is only available via PDF.
You do not currently have access to this content.